Performance of spark while reading from hive vs parquet - apache-spark

Assuming I have an external hive table on top parquet/orc files partitioned on date, what would be the performance impact of using
spark.read.parquet("s3a://....").filter("date_col='2021-06-20'")
v/s
spark.sql("select * from table").filter("date_col='2021-06-20'")
After reading into a dataframe, It will be followed by a series of transformations and aggregations.
spark version : 2.3.0 or 3.0.2
hive version : 1.2.1000
number of records per day : 300-700 Mn
My hunch is that there won't be any performance difference while using either of the above queries since parquet natively has most of the optimizations that a hive metastore can provide and spark is capable of using it. Like, predicate push-down, advantages of columnar storage etc.
As a follow-up question, what happens if
The underlying data was csv instead of parquet. Does having a hive table on top improves performance ?
Hive table was bucketed. Does it make sense to read the underlying file system in this case instead of reading from table ?
Also, are there any situations where reading directly from parquet is a better option compared to hive ?

Hive should actually be faster here because they both have pushdowns, Hive already has the schema stored. The parquet read as you have it here will need to infer the merged schema. You can make them about the same by providing the schema.
You can make the Parquet version even faster by navigating directly to the partition. This avoids having to do the initial filter on the available partitions.
So something like this would do it:
spark.read.option("basePath", "s3a://....").parquet("s3a://..../date_col=2021-06-20")
Note this works best if you already have a schema, because this also skips schema merging.
As to your follow-ups:
It would make a huge difference if it's CSV, as it would then have to parse all of the data and then filter out those columns. CSV is really bad for large datasets.
Shouldn't really gain you all that much and may get you into trouble. The metadata that Hive stores can allow Spark to navigate your data more efficiently here than you trying to do it yourself.

Related

Filtering Spark dataframe based on partition URIs that do not follow the standard Spark format

In Spark, for partitioned datasets that don't follow the standard URI format, the Catalyst does not pick up the partitioning information automatically. This means that filters can be highly inefficient. For instance, let's say the partitioning URI format is /{year}/{month}/{day} instead of /year={year}/month={month}/day={day}.
PySpark solutions that don't involve rewriting the data, registering each partition on the metastore or renaming the directories are appreciated. My guess is that this is possible in Scala?
To make the Catalyst recognize the partitioning structure, a potential solution is to use F.input_file_name() to load the partitioning, but this still loads unnecessary partitions instead of filtering. It's easy to test this doesn't work by corrupting a single partition that was not supposed to be read and also specifying the schema.

Spark Connect Hive to HDFS vs Spark connect HDFS directly and Hive on the top of it?

Summary of the problem:
I have a perticular usecase to write >10gb data per day to HDFS via spark streaming. We are currently in the design phase. We want to write the data to HDFS (constraint) using spark streaming. The data is columnar.
We have 2 options(so far):
Naturally, I would like to use hive context to feed data to HDFS. The schema is defined and the data is feeded in batches or row wise.
There is another option. We can directly write data to HDFS thanks to spark streaming API. We are also considering this because we can query data from HDFS through hive then in this usecase. This will leave options open to use other technologies in future for the new usecases that may come.
What is best?
Spark Streaming -> Hive -> HDFS -> Consumed by Hive.
VS
Spark Streaming -> HDFS -> Consumed by Hive , or other technologies.
Thanks.
So far I have not found a discussion on the topic, my research may be short. If there is any article that you can suggest, I would be most happy to read it.
I have a particular use case to write >10gb data per day and data is columnar
that means you are storing day-wise data. if thats the case hive has partition column as date, so that you can query the data for each day easily. you can query the raw data from BI tools like looker or presto or any other BI tool. if you are querying from spark then you can use hive features/properties. Moreover if you store the data in columnar format in parquet impala can query the data using hive metastore.
If your data is columnar consider parquet or orc.
Regarding option2:
if you have hive an option NO need to feed data in to HDFS and create an external table from hive and access it.
Conclusion :
I feel both are same. but hive is preferred considering direct query on raw data using BI tools or spark. From HDFS also we can query data using spark. if its there in the formats like json or parquet or xml there wont be added advantage for option 2.
It depends on your final use cases. Please consider below two scenarios while taking decision:
If you have RT/NRT case and all your data is full refresh then I would suggest to go with second approach Spark Streaming -> HDFS -> Consumed by Hive. It will be faster than your first approach Spark Streaming -> Hive -> HDFS -> Consumed by Hive. Since there is one less layer in it.
If your data is incremental and also have multiple update, delete operations then It will be difficult to use HDFS or Hive over HDFS with spark. Since Spark does not allow to update or delete data from HDFS. In that case, both your approaches will be difficult to implement. Either you can go with Hive managed table and do update/delete using HQL (only supported in Hortonwork Hive version) or you can go with NOSQL database like HBase or Cassandra so that spark can do upsert & delete easily. From program perspective, it will be also easy in compare to both your approaches.
If you dump data in NoSQL then you can use hive over it for normal SQL or reporting purpose.
There are so many tools & approaches are available but go with that which fit in your all cases. :)

read/write bucketed tables in Spark

I have a number of tables (with 100 million-ish rows) that are stored as external Hive tables using Parquet format. The Spark job needs to join several of them together, using a single column, with almost no filtering. The join column has unique values about 2/3X fewer than the number of rows.
I can see that there are shuffles happening by the join key; and I have been trying to utilize bucketing/partitioning to improve join performance. My thought is that if Spark can be made aware that each of these tables has been bucketed using the same column, it can load the dataframes and join them without shuffling. I have tried using Hive bucketing, but the shuffles don't go away. (From Spark's documentation it looks like Hive bucketing is not supported as of Spark 2.3.0 at least, which I found out later.) Can I use Spark's bucketing feature to do this? If yes, would I have to disable Hive support and just read the files directly? Or could I rewrite the tables once using Spark's bucketing scheme and still be able to read them as Hive tables?
EDIT: For writing out the Hive bucketed tables I was using something like:
customerDF
.write
.option("path", "/some/path")
.mode("overwrite")
.format("parquet")
.bucketBy(200, "customer_key")
.sortBy("customer_key")
.saveAsTable("table_name")
The writing part seems to work. However, reading from two tables written that way and joining them didn't work as I expected. That is, Spark was repartitioning both tables again into 200 partitions.
I don't have code for doing Spark bucketing right now but will update if I figure it out.

Spark and JDBC: Iterating through large table and writing to hdfs

What would be the most memory efficient way to copy the contents of a large relational table using spark and then write to a partitioned Hive table in parquet format (without sqoop). I have a basic spark app and i have done some other tuning with spark's jdbc but data in relational table is still 0.5 TB and 2 Billion records so I although I can lazy load the full table, I'm trying to figure out how to efficiently partition by date and save to hdfs without running into memory issues. since the jdbc load() from spark will load everything into memory I was thinking of looping through the dates in the database query but still not sure how to make sure I don't run out of memory.
If you need to use Spark you can add to your application date parameter for filtering table by date and run your Spark application in loop for each date. You can use bash or other scripting language for this loop.
This can look like:
foreach date in dates
spark-submit your application with date parameter
read DB table with spark.read.jdbc
filter by date using filter method
write result to HDFS with df.write.parquet("hdfs://path")
Another option is to use different technology for example implement Scala application using JDBC and DB cursor to iterate through rows and save result to HDFS. This is more complex, because you need to solve problems related to writing to Parquet format and saving to HDFS using Scala. If you want I can provide Scala code responsible for writing to Parquet format.

Optimized hive data aggregation using hive

I have a hive table (80 million records) with the followig schema (event_id ,country,unit_id,date) and i need to export this data to a text file as with the following requirments:
1-Rows are aggregated(combined) by event_id.
2-Aggregated rows must be sorted according to date.
For example rows with same event_id must be combined as a list of lists, ordered according to date.
What is the best performance wise solution to make this job using spark ?
Note: This is expected to be a batch job.
Performance-wise, I think the best solution is to write a spark program (scala or python) to read in the underlying files to the hive table, do your transformations, and then write the output as a file.
I've found that it's much quicker to just read the files in spark rather than querying hive through spark and pulling the result into a dataframe.

Resources