I am struggling to get this working.
I tried to transpose from a c++ post into python with no joy:
QMessageBox with a "Do not show this again" checkbox
my rough code goes like:
from PyQt5 import QtWidgets as qtw
...
mb = qtw.QMessageBox
cb = qtw.QCheckBox
# following 3 lines to get over runtime errors
# trying to pass the types it was asking for
# and surely messing up
mb.setCheckBox(mb(), cb())
cb.setText(cb(), "Don't show this message again")
cb.show(cb())
ret = mb.question(self,
'Close application',
'Do you really want to quit?',
mb.Yes | mb.No )
if ret == mb.No:
return
self.close()
the above executes with no errors but the checkbox ain't showing (the message box does).
consider that I am genetically stupid... and slow, very slow.
so please go easy on my learning curve
When trying to "port" code, it's important to know the basis of the source language and have a deeper knowledge of the target.
For instance, taking the first lines of your code and the referenced question:
QCheckBox *cb = new QCheckBox("Okay I understand");
The line above in C++ means that a new object (cb) of type QCheckBox is being created, and it's assigned the result of QCheckBox(...), which returns an instance of that class. To clarify how objects are declared, here's how a simple integer variable is created:
int mynumber = 10
This is because C++, like many languages, requires the object type for its declaration.
In Python, which is a dynamic typing language, this is not required (but it is possible since Python 3.6), but you still need to create the instance, and this is achieved by using the parentheses on the class (which results in calling it and causes both calling __new__ and then __init__). The first two lines of your code then should be:
mb = qtw.QMessageBox()
cb = qtw.QCheckBox()
Then, the problem is that you're calling the other methods with new instances of the above classes everytime.
An instance method (such as setCheckBox) is implicitly called with the instance as first argument, commonly known as self.
checkboxInstance = QCheckBox()
checkboxInstance.setText('My checkbox')
# is actually the result of:
QCheckBox.setText(checkboxInstance, 'My checkbox')
The last line means, more or less: call the setText function of the class QCheckBox, using the instance and the text as its arguments.
In fact, if QCheckBox was an actual python class, setText() would look like this:
class QCheckBox:
def setText(self, text):
self.text = text
When you did cb = qtw.QCheckBox you only created another reference to the class, and everytime you do cb() you create a new instance; the same happens for mb, since you created another reference to the message box class.
The following line:
mb.setCheckBox(mb(), cb())
is the same as:
QMessageBox.setCheckBox(QMessageBox(), QCheckBox())
Since you're creating new instances every time, the result is absolutely nothing: there's no reference to the new instances, and they will get immediately discarded ("garbage collected", aka, deleted) after that line is processed.
This is how the above should actually be done:
mb = qtw.QMessageBox()
cb = qtw.QCheckBox()
mb.setCheckBox(cb)
cb.setText("Don't show this message again")
Now, there's a fundamental flaw in your code: question() is a static method (actually, for Python, it's more of a class method). Static and class methods are functions that don't act on an instance, but only on/for a class. Static methods of QMessageBox like question or warning create a new instance of QMessageBox using the provided arguments, so everything you've done before on the instance you created is completely ignored.
These methods are convenience functions that allow simple creation of message boxes without the need to write too much code. Since those methods only allow customization based on their arguments (which don't include adding a check box), you obviously cannot use them, and you must code what they do "under the hood" explicitly.
Here is how the final code should look:
# create the dialog with a parent, which will make it *modal*
mb = qtw.QMessageBox(self)
mb.setWindowTitle('Close application')
mb.setText('Do you really want to quit?')
# you can set the text on a checkbox directly from its constructor
cb = qtw.QCheckBox("Don't show this message again")
mb.setCheckBox(cb)
mb.setStandardButtons(mb.Yes | mb.No)
ret = mb.exec_()
# call some function that stores the checkbox state
self.storeCloseWarning(cb.isChecked())
if ret == mb.No:
return
self.close()
Related
I'm connecting multiple signal/slots using a for loop in PyQt. The code is bellow:
# Connect Scan Callbacks
for button in ['phase', 'etalon', 'mirror', 'gain']:
getattr(self.ui, '{}_scan_button' .format(button)).clicked.connect(
lambda: self.scan_callback(button))
What I expect:
Connect button phase_scan_button clicked signal to the scan_callback slot and send the string phase as a parameter to the slot. The same for etalon, mirror and gain.
What I'm getting:
For some reason my functions is always passing the string gain as parameter for all the buttons. Not sure if I'm being stupid (likely) or it is a bug.
For reference, the slot method:
def scan_callback(self, scan):
print(scan) # Here I always get 'gain'
if self.scanner.isWorking:
self.scanner.isWorking = False
self.scan_thread.terminate()
self.scan_thread.wait()
else:
self.scanner.isWorking = True
self.scan_thread.start()
getattr(self.ui, '{}_scan_button' .format(
scan)).setText('Stop Scan')
getattr(self, '_signal{}Scan' .format(scan)).emit()
My preferred way of iterating over several widgets in pyqt is storing them as objects in lists.
myButtons = [self.ui.phase_scan_button, self.ui.etalon_scan_button,
self.ui.mirror_scan_button, self.ui.gain_scan_button]
for button in myButtons:
button.clicked.connect(lambda _, b=button: self.scan_callback(scan=b))
If you need the strings "phase", "etalon", "mirror" and "gain" separately, you can either store them in another list, or create a dictionary like
myButtons_dict = {"phase": self.ui.phase_scan_button,
"etalon": self.ui.etalon_scan_button,
"mirror": self.ui.mirror_scan_button,
"gain": self.ui.gain_scan_button}
for button in myButtons_dict:
myButtons_dict[button].clicked.connect(lambda: _, b=button self.scan_callback(scan=b))
Note, how I use the lambda expression with solid variables that are then passed into the function self.scan_callback. This way, the value of button is stored for good.
Your lambdas do not store the value of button when it is defined. The code describing the lambda function is parsed and compiled but not executed until you actually call the lambda.
Whenever any of the buttons is clicked, the current value of variable button is used. At the end of the loop, button contains "gain" and this causes the behaviour you see.
Try this:
funcs = []
for button in ['phase', 'etalon', 'mirror', 'gain']:
funcs.append( lambda : print(button))
for fn in funcs:
fn()
The output is:
gain
gain
gain
gain
Extending the example, as a proof that the lambdas don't store the value of button note that if button stops existing, you'll have an error:
del button
for fn in funcs:
fn()
which has output
funcs.append( lambda : print(button))
NameError: name 'button' is not defined
As noted here : Connecting slots and signals in PyQt4 in a loop
Using functools.partial is a nice workaround for this problem.
Have been struggling with same problem as OP for a day.
I defined a subclass of Atom in rdkit.Chem. I also defined an instance attribute in it but I could not get that instance from RWMol object in rdkit.
Below there is a sample code for my problem:
from rdkit import Chem
class MyAtom(Chem.Atom):
def __init__(self, symbol, **kwargs):
super().__init__(symbol, **kwargs)
self.my_attribute = 0
def get_my_attribute(self):
return self.my_attribute
if __name__ == '__main__':
rw_mol = Chem.RWMol()
# I created MyAtom class object then added to RWMol. But I couldn't get it again.
my_atom = MyAtom('C')
my_atom.my_attribute = 3
rw_mol.AddAtom(my_atom)
atom_in_mol = rw_mol.GetAtoms()[0]
# I can access my_atom new defined attributes.
print(my_atom.get_my_attribute())
# below two line gives error: AttributeError: 'Atom' object has no attribute 'get_my_attribute'
print(atom_in_mol.get_my_attribute())
print(atom_in_mol.my_attribute)
# type(atom1): <class '__main__.MyAtom'>
# type(atom_in_mol): <class 'rdkit.Chem.rdchem.Atom'>
# Why below atom types are different? Thanks to polymorphism, that two object types must be same.
Normally this code must run but it gives error due to last line because atom_in_mol object type is Chem.Atom. But should it be MyAtom? I also cannot access my_attribute directly.
rdkit Python library is a wrapper of C++. So is the problem this? Cannot I use inheritance for this library?
Note: I researched rdkit documentation and there is a SetProp method for saving values in atoms. It uses dictionary to save values. It runs fine but it is too slow for my project. I want to use instance attributes to save my extra values. Is there any solution for that inheritance problem, or faster different solution?
Python RDKit library is a C++ wrapper, so sometimes it does not follows the conventional Python object handling.
To go deeper, you will have to dig through the source code:
rw_mol.AddAtom(my_atom)
Above will execute AddAtom method in rdkit/Code/GraphMol/Wrap/Mol.cpp, which, in turn, calls addAtom method in rdkit/Code/GraphMol/RWMol.h, which then calls addAtom method in rdkit/Code/GraphMol/ROMol.cpp with default argument of updateLabel = true and takeOwnership = false.
The takeOwnership = false condition makes the argument atom to be duplicated,
// rdkit/Code/GraphMol/ROMol.cpp
if (!takeOwnership)
atom_p = atom_pin->copy();
else
atom_p = atom_pin;
Finally, if you look into what copy method do in rdkit/Code/GraphMol/Atom.cpp
Atom *Atom::copy() const {
auto *res = new Atom(*this);
return res;
}
So, it reinstantiate Atom class and returns it.
I've just started learning Python recently and the first project I'm making is a text based adventure game however I've run into a problem. I need a function that makes more objects using the class Goblin that are named after a string.
def spawn(name):
title = name
exec("{0} = {1}".format('title', Goblin))
return title, 'spawn'
Essentially, another function calls this function to create another Goblin (a class) using the input name(a string) as the name of the new Goblin.
What I don't under stand though is that when I run the code(using "bill" as the argument), it gives me this error.
bill = <class '__main__.Goblin'>
^
SyntaxError: invalid syntax
Shouldn't my function be equivalent to:
bill = Goblin
When you do this:
exec("{0} = {1}".format('title', Goblin))
format method converts Goblin class by calling default __str__ method which yields <class '__main__.Goblin'>
Do this instead:
exec("{0} = {1}".format('title', 'Goblin'))
Wait! don't to this, just do:
title = Goblin
as it's strictly equivalent (without any security issues :)).
But that will just alias Goblin class to title. No real interest to all this after all (unless you want to create an instance?: title = Goblin())
With your comment: "I want a Goblin that is named after the string which title represents" I get it: you need
exec("{0} = {1}".format(title, 'Goblin()'))
(no quotes for the first arg so the name you're passing is used, and () on the second to create an instance)
Again: this is really a clumsy way of doing it. What if you want to iterate through all your goblins?
It would be much better to create a dictionary:
goblins_dict = dict()
goblins_dict["my_goblin"] = Goblin()
goblins_dict["my_goblin_2"] = Goblin()
and so on...
Hi I've been struggling to get this to work, each time i change something I receive another error. I've been trying to create an entry box with a function and then get the variable from the entry box into a label, created by a button press. When I tried to do this often this error came up.
TypeError: get() missing 1 required positional argument: 'self'
I then put self in in the method brackets.
command = lambda: x.myFunc(self.my_variable.get(self))
Then another error, which I'm not sure how to sort out.
AttributeError: 'My_Class' object has no attribute '_tk'
Here's the full code, I'm new to classes and self, so any corrections are welcome.
from tkinter import *
import time
class My_Class:
def start(self):
self.root=Tk()
self.my_variable=StringVar
self.entry_box=Entry(self.root, textvariable=self.my_variable)
self.entry_box.pack()
self.button=Button(self.root,text="Pass variable now",
command=lambda:x.myFunc(self.my_variable.get(self)))
self.button.pack()
def myFunc(self,my_variable):
self.lab=Label(self.root,text=self.my_variable)
self.lab.pack()
x=My_Class()
x.start()
This is the correct way to create a StringVar object:
text = StringVar() # note additional ()
Can you explain me what x is in the following statement:
lambda: x.myFunc(self.my_variable.get(self))
x is not visible inside the class, because it's declared outside the class.
myFunc is not indented correctly: you should indent it like the __init__ method.
I really recommend you to watch some tutorials on OOP before proceeding. You are basically trying to guess how OOP works.
If you make myFunc A method if the class (which you might be trying to do; it's hard to know because your indentation is wrong), you don't have to pass anything to myFunc. That function has access to everything in the class, so it can get what it needs, when it needs it. That lets you eliminate the use of lambda, which helps reduce complexity.
Also, you normally don't need a StringVar at all, it's just one more thing to keep track of. However, if you really need the label and entry to show exactly the same data, have them share the same textvariable and the text is updated automatically without you having to call a function, or get the value from the widget, or set the value n the label.
Here's an example without using StringVar:
class My_Class:
def start(self):
...
self.entry_box = Entry(self.root)
self.button = Button(..., command = self.myFunc)
...
def myFunc(self):
s = self.entry_box.get()
self.lab = Label(..., text = s)
...
I'm still learning and like to build things that I will eventually be doing on a regular basis in the future, to give me a better understanding on how x does this or y does that.
I haven't learned much about how classes work entirely yet, but I set up a call that will go through multiple classes.
getattr(monster, monster_class.str().lower())(1)
Which calls this:
class monster:
def vampire(x):
monster_loot = {'Gold':75, 'Sword':50.3, 'Good Sword':40.5, 'Blood':100.0, 'Ore':.05}
if x == 1:
loot_table.all_loot(monster_loot)
Which in turn calls this...
class loot_table:
def all_loot(monster_loot):
loot = ['Gold', 'Sword', 'Good Sword', 'Ore']
loot_dropped = {}
for i in monster_loot:
if i in loot:
loot_dropped[i] = monster_loot[i]
drop_chance.chance(loot_dropped)
And then, finally, gets to the last class.
class drop_chance:
def chance(loot_list):
loot_gained = []
for i in loot_list:
x = random.uniform(0.0,100.0)
if loot_list[i] >= x:
loot_gained.append(i)
return loot_gained
And it all works, except it's not returning loot_gained. I'm assuming it's just being returned to the loot_table class and I have no idea how to bypass it all the way back down to the first line posted. Could I get some insight?
Keep using return.
def foo():
return bar()
def bar():
return baz()
def baz():
return 42
print foo()
I haven't learned much about how classes work entirely yet...
Rather informally, a class definition is a description of the object of that class (a.k.a. instance of the class) that is to be created in future. The class definition contains the code (definitions of the methods). The object (the class instance) basically contains the data. The method is a kind of function that can take arguments and that is capable to manipulate the object's data.
This way, classes should represent the behaviour of the real-world objects, the class instances simulate existence of the real-world objects. The methods represent actions that the object apply on themselves.
From that point of view, a class identifier should be a noun that describes category of objects of the class. A class instance identifier should also be a noun that names the object. A method identifier is usually a verb that describes the action.
In your case, at least the class drop_chance: is suspicious at least because of naming it this way.
If you want to print something reasonable about the object--say using the print(monster)--then define the __str__() method of the class -- see the doc.