I aim to use attention in a stacked LSTM model, but I don't know how to add AdditiveAttention mechanism of Keras between encoder and decoder layers. Let say, we have an input layer, an encoder, and a decoder, and a dense classification layer, and we aim our decoder to pay attention on all the hidden states of the encoder (h = [h1, ..., hT]) in deriving its outputs. Is there any high-level coding using the Keras whereby I can do? For example,
input_layer = Input(shape=(T, f))
x = input_layer
x = LSTM(num_neurons1, return_sequences=True)(x)
# Adding attention here, but I don't know how?
x = LSTM(num_neurons2)(x)
output_layer = Dense(1, 'sigmoid')(x)
model = Model(input_layer, output_layer)
...
I think this is wrong to use: x = AdditiveAttention(x, x). Am I right?
Maybe it is helpful for your issue ?
This is a classification model with LSTM and attention for classification on
character-level:
first create a custom layer for attention :
class attention(Layer):
def init(self,**kwargs):
super(attention,self).init(**kwargs)
def build(self,input_shape):
self.W=self.add_weight(name='attention_weight', shape=(input_shape[-1],1),
initializer='random_normal', trainable=True)
self.b=self.add_weight(name='attention_bias', shape=(input_shape[1],1),
initializer='zeros', trainable=True)
super(attention, self).build(input_shape)
def call(self,x):
# Alignment scores. Pass them through tanh function
e = K.tanh(K.dot(x,self.W)+self.b)
# Remove dimension of size 1
e = K.squeeze(e, axis=-1)
# Compute the weights
alpha = K.softmax(e)
# Reshape to tensorFlow format
alpha = K.expand_dims(alpha, axis=-1)
# Compute the context vector
context = x * alpha
context = K.sum(context, axis=1)
return context
LEN_CHA = 64 # number of characters
LEN_Input = 110 # depend on the longest sentence, padded with zero
def LSTM_model_attention(Labels=3):
model = Sequential()
model.add(Embedding(LEN_CHA, EMBEDDING_DIM, input_length=LEN_INPUT))
model.add(SpatialDropout1D(0.7))
model.add(Bidirectional(LSTM(256, return_sequences=True)))
model.add(attention())
model.add(Dense(Labels, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc'])
return model
LSTM_attention = LSTM_model_attention()
LSTM_attention.summary()
Related
I want to create an LSTM model using pytorch that takes multiple time series and creates predictions of all of them, a typical "many-to-many" LSTM network.
I am able to achieve what I want in keras. I create a set of data with three variables which are simply linearly spaced with some gaussian noise. Training the keras model I get a prediction 12 steps ahead that is reasonable.
When I try the same thing in pytorch the, model will always predict the mean of the input data. This is confirmed when looking at the loss during training I can see that the model never seems to perform better than just predicting the mean.
TL;DR; The question is: How can I achieve the same thing in pytorch as in the keras example in the gist below?
Full working examples are available here https://gist.github.com/jonlachmann/5cd68c9667a99e4f89edc0c307f94ddb
The keras network is defined as
model = Sequential()
model.add(LSTM(100, activation='relu', return_sequences=True, input_shape=(n_steps, n_features)))
model.add(LSTM(100, activation='relu'))
model.add(Dense(n_features))
model.compile(optimizer='adam', loss='mse')
and the pytorch network is
# Define the pytorch model
class torchLSTM(torch.nn.Module):
def __init__(self, n_features, seq_length):
super(torchLSTM, self).__init__()
self.n_features = n_features
self.seq_len = seq_length
self.n_hidden = 100 # number of hidden states
self.n_layers = 1 # number of LSTM layers (stacked)
self.l_lstm = torch.nn.LSTM(input_size=n_features,
hidden_size=self.n_hidden,
num_layers=self.n_layers,
batch_first=True)
# according to pytorch docs LSTM output is
# (batch_size,seq_len, num_directions * hidden_size)
# when considering batch_first = True
self.l_linear = torch.nn.Linear(self.n_hidden * self.seq_len, 3)
def init_hidden(self, batch_size):
# even with batch_first = True this remains same as docs
hidden_state = torch.zeros(self.n_layers, batch_size, self.n_hidden)
cell_state = torch.zeros(self.n_layers, batch_size, self.n_hidden)
self.hidden = (hidden_state, cell_state)
def forward(self, x):
batch_size, seq_len, _ = x.size()
lstm_out, self.hidden = self.l_lstm(x, self.hidden)
# lstm_out(with batch_first = True) is
# (batch_size,seq_len,num_directions * hidden_size)
# for following linear layer we want to keep batch_size dimension and merge rest
# .contiguous() -> solves tensor compatibility error
x = lstm_out.contiguous().view(batch_size, -1)
return self.l_linear(x)
I try to create image embeddings for the purpose of deep ranking using a triplet loss function. The idea is that we can take a pretrained CNN (e.g. resnet50 or vgg16), remove the FC layers and add an L2 normalization function to retrieve unit vectors which can then be compared via a distance metric (e.g. cosine similarity). As far as I understand the predicted vectors that come out of a pretrained CNN are not optimal, but are a good start. By adding the triplet loss function we can re-train the network to keep similar pictures 'close' to each other and different pictures 'far' apart in the feature space. Inspired by this notebook , I tried to setup the following code, but I get an error ValueError: The name "conv1_pad" is used 3 times in the model. All layer names should be unique..
# Anchor, Positive and Negative are numpy arrays of size (200, 256, 256, 3), same for the test images
pic_size=256
def shared_dnn(inp):
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(3, pic_size, pic_size),
input_tensor=inp)
x = base_model.output
x = Flatten()(x)
x = Lambda(lambda x: K.l2_normalize(x,axis=1))(x)
for layer in base_model.layers[15:]:
layer.trainable = False
return x
anchor_input = Input((3, pic_size,pic_size ), name='anchor_input')
positive_input = Input((3, pic_size,pic_size ), name='positive_input')
negative_input = Input((3, pic_size,pic_size ), name='negative_input')
encoded_anchor = shared_dnn(anchor_input)
encoded_positive = shared_dnn(positive_input)
encoded_negative = shared_dnn(negative_input)
merged_vector = concatenate([encoded_anchor, encoded_positive, encoded_negative], axis=-1, name='merged_layer')
model = Model(inputs=[anchor_input,positive_input, negative_input], outputs=merged_vector)
#ValueError: The name "conv1_pad" is used 3 times in the model. All layer names should be unique.
model.compile(loss=triplet_loss, optimizer=adam_optim)
model.fit([Anchor,Positive,Negative],
y=Y_dummy,
validation_data=([Anchor_test,Positive_test,Negative_test],Y_dummy2), batch_size=512, epochs=500)
I am new to keras and I am not quite sure how to solve this. The author in the link above creates his own CNN from scratch, but I would like to build it upon resnet (or vgg16). How can I configure ResNet50 to use a triplet loss function (in the link above you find also the source code for the triplet loss function).
In your ResNet50 definition, you've written
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(3, pic_size, pic_size), input_tensor=inp)
Remove the input_tensor argument. Change input_shape=inp.
If you're using TF backend as you mentioned the input should be (256, 256, 3), then your input should be (pic_size, pic_size, 3).
def shared_dnn(inp):
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=inp)
x = base_model.output
x = Flatten()(x)
x = Lambda(lambda x: K.l2_normalize(x,axis=1))(x)
for layer in base_model.layers[15:]:
layer.trainable = False
return x
img_shape=(256, 256, 3)
anchor_input = Input(img_shape, name='anchor_input')
positive_input = Input(img_shape, name='positive_input')
negative_input = Input(img_shape, name='negative_input')
encoded_anchor = shared_dnn(anchor_input)
encoded_positive = shared_dnn(positive_input)
encoded_negative = shared_dnn(negative_input)
merged_vector = concatenate([encoded_anchor, encoded_positive, encoded_negative], axis=-1, name='merged_layer')
model = Model(inputs=[anchor_input,positive_input, negative_input], outputs=merged_vector)
model.compile(loss=triplet_loss, optimizer=adam_optim)
model.fit([Anchor,Positive,Negative],
y=Y_dummy,
validation_data=([Anchor_test,Positive_test,Negative_test],Y_dummy2), batch_size=512, epochs=500)
The model plot is as follows:
model_plot
i've a CRNN model for text recognition, it was published on Github, trained on english language,
Now i'm doing the same thing using this algorithm but for arabic.
My ctc function is:
def ctc_lambda_func(args):
y_pred, labels, input_length, label_length = args
# the 2 is critical here since the first couple outputs of the RNN
# tend to be garbage:
y_pred = y_pred[:, 2:, :]
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
My Model is:
def get_Model(training):
img_w = 128
img_h = 64
# Network parameters
conv_filters = 16
kernel_size = (3, 3)
pool_size = 2
time_dense_size = 32
rnn_size = 128
if K.image_data_format() == 'channels_first':
input_shape = (1, img_w, img_h)
else:
input_shape = (img_w, img_h, 1)
# Initialising the CNN
act = 'relu'
input_data = Input(name='the_input', shape=input_shape, dtype='float32')
inner = Conv2D(conv_filters, kernel_size, padding='same',
activation=act, kernel_initializer='he_normal',
name='conv1')(input_data)
inner = MaxPooling2D(pool_size=(pool_size, pool_size), name='max1')(inner)
inner = Conv2D(conv_filters, kernel_size, padding='same',
activation=act, kernel_initializer='he_normal',
name='conv2')(inner)
inner = MaxPooling2D(pool_size=(pool_size, pool_size), name='max2')(inner)
conv_to_rnn_dims = (img_w // (pool_size ** 2), (img_h // (pool_size ** 2)) * conv_filters)
inner = Reshape(target_shape=conv_to_rnn_dims, name='reshape')(inner)
# cuts down input size going into RNN:
inner = Dense(time_dense_size, activation=act, name='dense1')(inner)
# Two layers of bidirectional GRUs
# GRU seems to work as well, if not better than LSTM:
gru_1 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru1')(inner)
gru_1b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru1_b')(inner)
gru1_merged = add([gru_1, gru_1b])
gru_2 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru2')(gru1_merged)
gru_2b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru2_b')(gru1_merged)
# transforms RNN output to character activations:
inner = Dense(num_classes+1, kernel_initializer='he_normal',
name='dense2')(concatenate([gru_2, gru_2b]))
y_pred = Activation('softmax', name='softmax')(inner)
Model(inputs=input_data, outputs=y_pred).summary()
labels = Input(name='the_labels', shape=[30], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
# clipnorm seems to speeds up convergence
# the loss calc occurs elsewhere, so use a dummy lambda func for the loss
if training:
return Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
return Model(inputs=[input_data], outputs=y_pred)
Then i compile it with SGD optimizer (Tried SGD,adam)
sgd = SGD(lr=0.0000002, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=sgd)
Then i fit the model with my training set (Images of words up to 30 characters) into (sequence of labels of 30
model.fit_generator(generator=tiger_train.next_batch(),
steps_per_epoch=int(tiger_train.n / batch_size),
epochs=30,
callbacks=[checkpoint],
validation_data=tiger_val.next_batch(),
validation_steps=int(tiger_val.n / val_batch_size))
Once it starts, it give me loss = inf, after many searches, i didn't find any similar problem.
So my questions is, how can i solve this, what can make a ctc_loss compute an infinite cost?
Thanks in advance
I found the problem, it was dimensions problem,
For R-CNN OCR using CTC layer, if you are detecting a sequence with length n, you should have an image with at least a width of (2*n-1). The more the better till you reach the best image/timesteps ratio to let the CTC layer able to recognize the letter correctly. If image with is less than (2*n-1), it will give a nan loss.
This error is happened when image text have two equal characters in the same sequence e.g happen --> pp. for so that you can remove data that has this characteristic.
I’m trying to implement a Visual Storytelling model using Keras with a hierarchical RNN model, basically Neural Image Captioner style but over a sequence of photos with a bidirectional RNN on top of the decoder RNNs.
I implemented and tested the three parts of this model, CNN, BRNN and decoder RNN separately but got this error when trying to connect them:
ValueError: An operation has None for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.
My code are as follows:
#vgg16 model with the fc2 layer as output
cnn_base_model = self.cnn_model.base_model
brnn_model = self.brnn_model.model
rnn_model = self.rnn_model.model
cnn_part = TimeDistributed(cnn_base_model)
img_input = Input((self.story_length,) + self.cnn_model.input_shape, name='brnn_img_input')
extracted_feature = cnn_part(img_input)
#[None, 5, 512], a 512 length vector for each picture in the story
brnn_feature = brnn_model(extracted_feature)
#[None, 5, 25], input groundtruth word indices fed as input when training
decoder_input = Input((self.story_length, self.max_length), name='brnn_decoder_input')
decoder_outputs = []
for i in range(self.story_length):
#separate timesteps for decoding
decoder_input_i = Lambda(lambda x: x[:, i, :])(decoder_input)
brnn_feature_i = Lambda(lambda x: x[:, i, :])(brnn_feature)
#the problem persists when using Dense instead of the Lambda layers above
#decoder_input_i = Dense(25)(Reshape((125,))(decoder_input))
#brnn_feature_i = Dense(512)(Reshape((5 * 512,))(brnn_feature))
decoder_output_i = rnn_model([decoder_input_i, brnn_feature_i])
decoder_outputs.append(decoder_output_i)
decoder_output = Concatenate(axis=-2, name='brnn_decoder_output')(decoder_outputs)
self.model = Model([img_input, decoder_input], decoder_output)
And codes for the BRNN:
image_feature = Input(shape=(self.story_length, self.img_feature_dim,))
image_emb = TimeDistributed(Dense(self.lstm_size))(image_feature)
brnn = Bidirectional(LSTM(self.lstm_size, return_sequences=True), merge_mode='concat')(image_emb)
brnn_emb = TimeDistributed(Dense(self.lstm_size))(brnn)
self.model = Model(inputs=image_feature, outputs=brnn_emb)
And RNN:
#[None, 512], the vector to be decoded
initial_input = Input(shape=(self.input_dim,), name='rnn_initial_input')
#[None, 25], the groundtruth word indices fed as input when training
decoder_inputs = Input(shape=(None,), name='rnn_decoder_inputs')
decoder_input_masking = Masking(mask_value=0.0)(decoder_inputs)
decoder_input_embeddings = Embedding(self.vocabulary_size, self.emb_size,
embeddings_regularizer=l2(regularizer))(decoder_input_masking)
decoder_input_dropout = Dropout(.5)(decoder_input_embeddings)
initial_emb = Dense(self.emb_size,
kernel_regularizer=l2(regularizer))(initial_input)
initial_reshape = Reshape((1, self.emb_size))(initial_emb)
initial_masking = Masking(mask_value=0.0)(initial_reshape)
initial_dropout = Dropout(.5)(initial_masking)
decoder_lstm = LSTM(self.hidden_dim, return_sequences=True, return_state=True,
recurrent_regularizer=l2(regularizer),
kernel_regularizer=l2(regularizer),
bias_regularizer=l2(regularizer))
_, initial_hidden_h, initial_hidden_c = decoder_lstm(initial_dropout)
decoder_outputs, decoder_state_h, decoder_state_c = decoder_lstm(decoder_input_dropout,
initial_state=[initial_hidden_h, initial_hidden_c])
decoder_output_dense_layer = TimeDistributed(Dense(self.vocabulary_size, activation='softmax',
kernel_regularizer=l2(regularizer)))
decoder_output_dense = decoder_output_dense_layer(decoder_outputs)
self.model = Model([decoder_inputs, initial_input], decoder_output_dense)
I’m using adam as optimizer and sparse_categorical_crossentropy as loss.
At first I thought the problem is with the Lambda layers used for splitting the timesteps but the problem persists when I replaced them with Dense layers (which are guarantee
I had a similar error and it turned out I was suppose to build the layers (in my custom layer or model) in the init() like so:
self.lstm_custom_1 = keras.layers.LSTM(128,batch_input_shape=batch_input_shape, return_sequences=False,stateful=True)
self.lstm_custom_1.build(batch_input_shape)
self.dense_custom_1 = keras.layers.Dense(32, activation = 'relu')
self.dense_custom_1.build(input_shape=(batch_size, 128))```
The issue is actually with the Embedding layer, I think. Gradients can't pass through an Embedding layer, so unless it's the first layer in the model it won't work.
Hello I have a some question for keras.
currently i want implement some network
using same cnn model, and use two images as input of cnn model
and use two result of cnn model, provide to Dense model
for example
def cnn_model():
input = Input(shape=(None, None, 3))
x = Conv2D(8, (3, 3), strides=(1, 1))(input)
x = GlobalAvgPool2D()(x)
model = Model(input, x)
return model
def fc_model(cnn1, cnn2):
input_1 = cnn1.output
input_2 = cnn2.output
input = concatenate([input_1, input_2])
x = Dense(1, input_shape=(None, 16))(input)
x = Activation('sigmoid')(x)
model = Model([cnn1.input, cnn2.input], x)
return model
def main():
cnn1 = cnn_model()
cnn2 = cnn_model()
model = fc_model(cnn1, cnn2)
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(x=[image1, image2], y=[1.0, 1.0], batch_size=1, ecpochs=1)
i want to implement model something like this, and train models
but i got error message like below :
'All layer names should be unique'
Actually i want use only one CNN model as feature extractor and finally use two features to predict one float value as 0.0 ~ 1.0
so whole system -->>
using two images and extract features from same CNN model, and features are provided to Dense model to get one floating value
Please, help me implement this system and how to train..
Thank you
See the section of the Keras documentation on shared layers:
https://keras.io/getting-started/functional-api-guide/
A code snippet from the documentation above demonstrating this:
# This layer can take as input a matrix
# and will return a vector of size 64
shared_lstm = LSTM(64)
# When we reuse the same layer instance
# multiple times, the weights of the layer
# are also being reused
# (it is effectively *the same* layer)
encoded_a = shared_lstm(tweet_a)
encoded_b = shared_lstm(tweet_b)
# We can then concatenate the two vectors:
merged_vector = keras.layers.concatenate([encoded_a, encoded_b], axis=-1)
# And add a logistic regression on top
predictions = Dense(1, activation='sigmoid')(merged_vector)
# We define a trainable model linking the
# tweet inputs to the predictions
model = Model(inputs=[tweet_a, tweet_b], outputs=predictions)
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
model.fit([data_a, data_b], labels, epochs=10)