Negative production for end of life treatment process - brightway

I am currently working with the ecoinvent 3.6 database in Brightway and I have a question about the end of life treatment processes. I found out that some of these treatment processes have a negative production amount and give negative results when tested. For the same processes opened in Simapro, the production amount is positive and the LCA score is also positive. Screenshot of an activity details in Brightway
Screenshot of the result for this activity in Brightway
Screenshot of the activity details in Simapro
Screenshot of the result for this activity in Simapro
Is there an explanation for this ? And is it possible to know which processes are concerned ? Than you very much for your answer.

it is a thorny sign convention issue. One needs to be aware of these conventions because different LCA softwares and databases can have different conventions.
if you look into the same dataset in ecoinvent website you'll see that the reference product is -1 waste polypropylene. What that means is that it treats 1 kg of polypropylene.
Following the same convention the production flow of that activity on brightway is -1 (unlike normal "production" activities that have a positive production). To be consistent, the use of waste treatment services has also a negative amount (if you look into technosphere exchanges you'll see waste with - sign).
I think simapro treats them differently, and flips the sign of waste treatment activities, that is why you see it positive. It then flips the sign at some point in the calculation.
A good explanation is probably buried in the LCA mailing list somewhere, but I could not find it.

Related

Differences in Differences Parallel Trends

I want to measure whether the impact of a company's headquarter country on my independent variable (goodwill paid) is stronger during recessions. After some researching, I found out that the differences-in-differences analysis could solve my problem. However, in the internet they always show a diagram (see example under: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.publichealth.columbia.edu%2Fresearch%2Fpopulation-health-methods%2Fdifference-difference-estimation&psig=AOvVaw1yMN6knTtOEahZ9vstJpnV&ust=1676208292554000&source=images&cd=vfe&ved=0CAwQjRxqFwoTCLjbrNDIjf0CFQAAAAAdAAAAABAE ) with the "treatment" and "parallel trends". So two lines that increase or decrease in the same way until the treatment and then one line increase/decreases more than the other.
My question now is what is my treatment and what is my control variable in my example? The treatment cannot be recessions because otherwise I just have the treatment group after the treatment and the control group before the recessions. If you think another statistical test may be better, I would be happy to consider that.
Furthermore, I just want to make sure that I created my model correctly: Goodwil Paid=B0+B1ressions+B2Country+B3ressionsCountry
Would that tell me whether the impact of the country is stronger during recessions?
Thanks a lot for your help.

How to deal with end of life scenarios on Brightway?

I am currently working on a project about life cycle models for vehicles on Brightway. The models I am using are inspired from models on the software Simapro. All the life cycle processes are created fine except for the end of life scenarios. On Simapro the end of life scenarios are described with percentages of recycled mass for each type of product (plastics, aluminium, glass, etc) but I can't find how to translate this into Brightway. Do you have ideas on how to deal with these end of life scenarios on Brightway ? Thank you for your answer.
Example of the definition of an end of life scenario on Simapro
There are many different ways to model End-of-Life, depending on what kind of abstraction you choose to map to the matrix math at the heart of Brightway. There is always some impedence between our intuitive understanding of physical systems, and the computational models we work with. Brightway doesn't have any built-in functionality to calculate fractions of material inputs, but you can do this manually by adding an appropriate EoL activity for each input to your vehicle. This can be in the vehicle activity itself, or as a separate activity. You could also write functions that would add these activities automatically, though my guess is that manual addition makes more sense, as you can check the reasonableness of the linked EoL activities more easily.
One thing to be aware of is that, depending on the background database you are using, the sign of the EoL activity might not be what you expect. Again, what we think of is not necessarily what fits into the model. For example, aluminium going to a recycling center is a physical output of an activity, and all outputs have positive signs (inputs have negative signs in the matrix, but Brightway sets this sign by the type of the exchange). However, ecoinvent models EoL treatment activities as negative inputs (which is identical to positive outputs, the negatives cancel). I would build a simple system to make sure you are getting results you expect before working on more complex systems.

ANOVA test on time series data

In below post of Analytics Vidya, ANOVA test has been performed on COVID data, to check whether the difference in posotive cases of denser region is statistically significant.
I believe ANOVA test can’t be performed on this COVID time series data, atleast not in way as it has been done in this post.
Sample data has been consider randomly from different groups(denser1, denser2…denser4). The data is time series so it is more likely that number of positive cases in random sample of groups will be from different point of time.
There might be the case denser1 has random data from early covid time and another region has random data from another point of time. If this is the case, then F-Statistics will high certainly.
Can anyone explain if you have other opinions?
https://www.analyticsvidhya.com/blog/2020/06/introduction-anova-statistics-data-science-covid-python/
ANOVA should not be applied to time-series data, as the independence assumption is violated. The issue with independence is that days tend to correlate very highly. For example, if you know that today you have 1400 positive cases, you would expect tomorrow to have a similar number of positive cases, regardless of any underlying trends.
It sounds like you're trying to determine causality of different treatments (ie mask mandates or other restrictions etc) and their effects on positive cases. The best way to infer causality is usually to perform A-B testing, but obviously in this case it would not be reasonable to give different populations different treatments. One method that is good for going back and retro-actively inferring causality is called "synthetic control".
https://economics.mit.edu/files/17847
Above is linked a basic paper on the methodology. The hard part of this analysis will be in constructing synthetic counterfactuals or "controls" to test your actual population against.
If this is not what you're looking for, please reply with a clarifying question, but I think this should be an appropriate method that is well-suited to studying time-series data.

Compare two web pages (A/B testing) - Two sample portion test

I have two changes on my web page but I'm monitoring a bunch of variables. So what I'm able to extract from my website monitoring experiment is as follows:
Original solution: Visitors, body link click-visitors, most popular click-visitors, share-visitors.
Solution with some change: Visitors, body link click-visitors, most popular click-visitors, share-visitors.
I was wondering about simple 2 sample portion test. Take each of the monitored variable and compute portion test for original and changed solution.
I don't know if it tells me something about the overall result - if original solution is better than the solution with some change or not.
Is there something better what can I use for this purpose. I'll appreciate any of your advice.
Sounds to me like you’re confusing two things: business metric of interest and test for statistical significance. The former is some business mesurement that you would like to measure for. This could be sales, conversion, subscription rate, or many others. See e.g. this paper for a good discussion on the perils of using the wrong metric. Statistical significance is a test that tells you if the number of measurements you’ve seen so far is enough to substantiate a claim that the difference between the two experiences is very unlikely random. See e.g. this paper for a good discussion.

How do you measure if an interface change improved or reduced usability?

For an ecommerce website how do you measure if a change to your site actually improved usability? What kind of measurements should you gather and how would you set up a framework for making this testing part of development?
Multivariate testing and reporting is a great way to actually measure these kind of things.
It allows you to test what combination of page elements has the greatest conversion rate, providing continual improvement on your site design and usability.
Google Web Optimiser has support for this.
Similar methods that you used to identify the usability problems to begin with-- usability testing. Typically you identify your use-cases and then have a lab study evaluating how users go about accomplishing certain goals. Lab testing is typically good with 8-10 people.
The more information methodology we have adopted to understand our users is to have anonymous data collection (you may need user permission, make your privacy policys clear, etc.) This is simply evaluating what buttons/navigation menus users click on, how users delete something (i.e. changing quantity - are more users entering 0 and updating quantity or hitting X)? This is a bit more complex to setup; you have to develop an infrastructure to hold this data (which is actually just counters, i.e. "Times clicked x: 138838383, Times entered 0: 390393") and allow data points to be created as needed to plug into the design.
To push the measurement of an improvement of a UI change up the stream from end-user (where the data gathering could take a while) to design or implementation, some simple heuristics can be used:
Is the number of actions it takes to perform a scenario less? (If yes, then it has improved). Measurement: # of steps reduced / added.
Does the change reduce the number of kinds of input devices to use (even if # of steps is the same)? By this, I mean if you take something that relied on both the mouse and keyboard and changed it to rely only on the mouse or only on the keyboard, then you have improved useability. Measurement: Change in # of devices used.
Does the change make different parts of the website consistent? E.g. If one part of the e-Commerce site loses changes made while you are not logged on and another part does not, this is inconsistent. Changing it so that they have the same behavior improves usability (preferably to the more fault tolerant please!). Measurement: Make a graph (flow chart really) mapping the ways a particular action could be done. Improvement is a reduction in the # of edges on the graph.
And so on... find some general UI tips, figure out some metrics like the above, and you can approximate usability improvement.
Once you have these design approximations of user improvement, and then gather longer term data, you can see if there is any predictive ability for the design-level usability improvements to the end-user reaction (like: Over the last 10 projects, we've seen an average of 1% quicker scenarios for each action removed, with a range of 0.25% and standard dev of 0.32%).
The first way can be fully subjective or partly quantified: user complaints and positive feedbacks. The problem with this is that you may have some strong biases when it comes to filter those feedbacks, so you better make as quantitative as possible. Having some ticketing system to file every report from the users and gathering statistics about each version of the interface might be useful. Just get your statistics right.
The second way is to measure the difference in a questionnaire taken about the interface by end-users. Answers to each question should be a set of discrete values and then again you can gather statistics for each version of the interface.
The latter way may be much harder to setup (designing a questionnaire and possibly the controlled environment for it as well as the guidelines to interpret the results is a craft by itself) but the former makes it unpleasantly easy to mess up with the measurements. For example, you have to consider the fact that the number of tickets you get for each version is dependent on the time it is used, and that all time ranges are not equal (e.g. a whole class of critical issues may never be discovered before the third or fourth week of usage, or users might tend not to file tickets the first days of use, even if they find issues, etc.).
Torial stole my answer. Although if there is a measure of how long it takes to do a certain task. If the time is reduced and the task is still completed, then that's a good thing.
Also, if there is a way to record the number of cancels, then that would work too.

Resources