Mean squared logarithmic error using pytorch - pytorch

hello I'm new with PyTorch and i would like to use Mean squared logarithmic error as a loss function in my neural network for training my DQN agent but i can't find the MSLE in the nn.functional in PyTorch what the best way to implement it ?

well is not hard to do it
the MSLE equation as the photo below shows
now, as some user on the PyTorch form suggested
you can be added as a class like this
class RMSLELoss(nn.Module):
def __init__(self):
super().__init__()
self.mse = nn.MSELoss()
def forward(self, pred, actual):
return torch.sqrt(self.mse(torch.log(pred + 1), torch.log(actual + 1)))
then you can call it normally
criterion = RMSLELoss()
rmsle = criterion(pred, actual)

Related

Cross Entropy for Soft Labeling in Pytorch

i'm trying to define the loss function of a two-class classification problem. However, the target label is not hard label 0,1, but a float number between 0~1.
torch.nn.CrossEntropy in Pytorch do not support soft label so i'm trying to write a cross entropy function by my self.
My function looks like this
def cross_entropy(self, pred, target):
loss = -torch.mean(torch.sum(target.flatten() * torch.log(pred.flatten())))
return loss
def step(self, batch: Any):
x, y = batch
logits = self.forward(x)
loss = self.criterion(logits, y)
preds = logits
# torch.argmax(logits, dim=1)
return loss, preds, y
however it does not work at all.
Can anyone give me a suggestion is there any mistake in my loss function?
It seems like BCELoss and the robust version BCEWithLogitsLoss are working with fuzzy targets "out of the box". They do not expect target to be binary" any number between zero and one is fine.
Please read the doc.

Intermediate Layer loss calculation for conditional Computation

I want to create an MLP based custom CNN model (multi-scaled) consists of several parallel small networks (capsules). These simple small networks are instantiated as a custom layer (conv2d->Flatten->Dense) for each convolution scale i.e. 3x3, 5x5. The purpose of these capsule networks is to generate intermediate loss consciousness to reduce overall global loss using the CNN model. I have written some sketchy codes but I'm not able to write the correct code for computing local loss using these capsules. Here's the code:
from tensorflow.keras import layers
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Layer
class capsule(tf.keras.layers.Layer):
def __init__(self):
super(capsule, self).__init__()
self.loss_fn = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
self.Flatten = tf.keras.layers.Flatten()
self.conv2D = tf.keras.layers.Conv2D(3,3,(1,1),padding='same', activation='relu',name="LocalLoss3x3")
self.classifier = tf.keras.layers.Dense(10,activation='softmax', name='capsule3Output')
def call(self, inputs):
x=self.conv2D(inputs)
x=self.Flatten(x)
x=self.classifier(x)
pred=self(x_train)
loss=self.loss_fn(pred,y_train)
#self.add_loss(self.rate * tf.reduce_sum(tf.square(inputs)))
return loss, x
(x_train, y_train), (x_test, y_test)= mnist.load_data()
from tensorflow.keras import layers
class SparseMLP(tf.keras.models.Model):
def __init__(self, output_dim):
super(SparseMLP, self).__init__()
self.dense_1 = layers.Dense(1, activation=tf.nn.relu)
self.capsule = capsule()
self.dense_2 = layers.Dense(output_dim)
def call(self, inputs):
x = self.dense_1(inputs)
loss,x = self.capsule(inputs)
return self.dense_2(x)
mlp = SparseMLP(10)
#x_train=x_train.reshape(-1,28,28,1)
y = mlp(x_train)
To include a loss within a layer , you can use add_loss function of tf.keras.layers.Layer class. This fucntion takes a loss value and adds it up to the global loss function define in compile function.
you can call self.add_loss(loss_value) from inside the call method of a custom
layer.Losses added in this way get added to the "main" loss during training
(the one passed to compile()).
So to make ur model consider the losses from intermediate layer , you should uncomment the add_loss fn , and then train the model in usual way that you train.
Please mind that it is totally fine to not declare a "main" loss in the compile function as there already is a loss that ur defining in your layer class.
Note that when you pass losses via add_loss(), it becomes possible to call compile() without a loss function, since the model already has a loss to minimize.
Please note that call function of SparseMLP model , should look like this:
x = self.dense_1(inputs)
# i dunno if u desire to do this, that is pass inputs in capsule
# instead of x.Currently the output from dense_1 is not used at all .
# so keep in mind to make sure ur passing proper inputs to layers.
# and u do not have to call loss here as it will tracked internally by
# keras.
x = self.capsule(inputs)
return self.dense_2(x)
So running your model like below should do the trick:
model.compile(loss = "define ur main loss is there is" , metrics = "define ur metrics")
model.fit(x = train_inst , y = train_targets)

What does PyTorch classifier output?

So i am new to deep learning and started learning PyTorch. I created a classifier model with following structure.
class model(nn.Module):
def __init__(self):
super(model, self).__init__()
resnet = models.resnet34(pretrained=True)
layers = list(resnet.children())[:8]
self.features1 = nn.Sequential(*layers[:6])
self.features2 = nn.Sequential(*layers[6:])
self.classifier = nn.Sequential(nn.BatchNorm1d(512), nn.Linear(512, 3))
def forward(self, x):
x = self.features1(x)
x = self.features2(x)
x = F.relu(x)
x = nn.AdaptiveAvgPool2d((1,1))(x)
x = x.view(x.shape[0], -1)
return self.classifier(x)
So basically I wanted to classify among three things {0,1,2}. While evaluating, I passed the image it returned a Tensor with three values like below
(tensor([[-0.1526, 1.3511, -1.0384]], device='cuda:0', grad_fn=<AddmmBackward>)
So my question is what are these three numbers? Are they probability ?
P.S. Please pardon me If I asked something too silly.
The final layer nn.Linear (fully connected layer) of self.classifier of your model produces values, that we can call a scores, for example, it may be: [10.3, -3.5, -12.0], the same you can see in your example as well: [-0.1526, 1.3511, -1.0384] which are not normalized and cannot be interpreted as probabilities.
As you can see it's just a kind of "raw unscaled" network output, in other words these values are not normalized, and it's hard to use them or interpret the results, that's why the common practice is converting them to normalized probability distribution by using softmax after the final layer, as #skinny_func has already described. After that you will get the probabilities in the range of 0 and 1, which is more intuitive representation.
So after training what you would want to do is to apply softmax to the output tensor to extract the probability of each class, then you choose the maximal value (highest probability).
in your case:
prob = torch.nn.functional.softmax(model(x), dim=1)
_, pred_class = torch.max(prob, dim=1)

Visualize the output of Vgg16 model by TSNE plot?

I need to visualize the output of Vgg16 model which classify 14 different classes.
I load the trained model and I did replace the classifier layer with the identity() layer but it doesn't categorize the output.
Here is the snippet:
the number of samples here is 1000 images.
epoch = 800
PATH = 'vgg16_epoch{}.pth'.format(epoch)
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
model.classifier._modules['6'] = Identity()
model.eval()
logits_list = numpy.empty((0,4096))
targets = []
with torch.no_grad():
for step, (t_image, target, classess, image_path) in enumerate(test_loader):
t_image = t_image.cuda()
target = target.cuda()
target = target.data.cpu().numpy()
targets.append(target)
logits = model(t_image)
print(logits.shape)
logits = logits.data.cpu().numpy()
print(logits.shape)
logits_list = numpy.append(logits_list, logits, axis=0)
print(logits_list.shape)
tsne = TSNE(n_components=2, verbose=1, perplexity=10, n_iter=1000)
tsne_results = tsne.fit_transform(logits_list)
target_ids = range(len(targets))
plt.scatter(tsne_results[:,0],tsne_results[:,1],c = target_ids ,cmap=plt.cm.get_cmap("jet", 14))
plt.colorbar(ticks=range(14))
plt.legend()
plt.show()
here is what this script has been produced: I am not sure why I have all colors for each cluster!
The VGG16 outputs over 25k features to the classifier. I believe it's too much to t-SNE. It's a good idea to include a new nn.Linear layer to reduce this number. So, t-SNE may work better. In addition, I'd recommend you two different ways to get the features from the model:
The best way to get it regardless of the model is by using the register_forward_hook method. You may find a notebook here with an example.
If you don't want to use the register, I'd suggest this one. After loading your model, you may use the following class to extract the features:
class FeatNet (nn.Module):
def __init__(self, vgg):
super(FeatNet, self).__init__()
self.features = nn.Sequential(*list(vgg.children())[:-1]))
def forward(self, img):
return self.features(img)
Now, you just need to call FeatNet(img) to get the features.
To include the feature reducer, as I suggested before, you need to retrain your model doing something like:
class FeatNet (nn.Module):
def __init__(self, vgg):
super(FeatNet, self).__init__()
self.features = nn.Sequential(*list(vgg.children())[:-1]))
self.feat_reducer = nn.Sequential(
nn.Linear(25088, 1024),
nn.BatchNorm1d(1024),
nn.ReLU()
)
self.classifier = nn.Linear(1024, 14)
def forward(self, img):
x = self.features(img)
x_r = self.feat_reducer(x)
return self.classifier(x_r)
Then, you can run your model returning x_r, that is, the reduced features. As I told you, 25k features are too much for t-SNE. Another method to reduce this number is by using PCA instead of nn.Linear. In this case, you send the 25k features to PCA and then train t-SNE using the PCA's output. I prefer using nn.Linear, but you need to test to check which one you get a better result.

How to add BatchNormalization loss to gradient calculation in tensorflow 2.0 using keras subclass API

Using the keras subclass API it is easy enough to add a a batch normalization layer however the layer.losses list always appears empty. What is the correct method of including in the train loss when doing tape.gradient(loss, lossmodel.trainable_variables) where lossmodel is some separate keras subclass model defining a more complicated loss function that must include the gradient losses?
For example, this is minimal model with ONLY the batch norm layer. It has no loss AFAIK
class M(tf.keras.Model):
def __init__(self, axis):
super().__init__()
self.layer = tf.keras.layers.BatchNormalization(axis=axis, scale=False, center=True, virtual_batch_size=1, input_shape=(6,))
def call(self, x):
out = self.layer(x)
return out
m = M(1)
In [77]: m.layer.losses
Out[77]: []

Resources