Independent variable in Multiple Linear Regression Model - excel-formula

I am trying to create a regression model for this question. The question gives me a dependent variable Sales ($ thousands), 2 independent variables: Influencer type (macro or nano) and Social Media ad expense ($ thousands). It states "manager believes that Macro influencers provide a greater
return to sales per advertisement dollar spent" with the hint that I need to create a new independent variable for this model. I have changed the influencer type to dummy values (Macro =1, Nano =0) and know how to generate the model on Excel, but I just don't understand what is the new independent variable that I need to create? Any help is much appreciated!! !!

This question is not about Excel, it's just statistics.
The coefficient of the dummy variable will only tell you about the baseline sales are conditional on the type of influencer. If you want "return to sales per advertisement dollar spent", you should interact the two variables. That is, your model should look like this:
y = a + b1x1 + b2x2 + b3x1x2 + e
where y = Sales ($ thousands), x1 = Dummy influencer (Macro =1, Nano =0), x2 = Social Media ad expense ($ thousands), e = error term.
Your coefficient of interest would then be b3. If b3^>0 and statistically significant, you can say that the manager's belief is supported by the data.

Related

How do I get the Gross Value Added (GVA) of countries/industries from MRIO models?

I want to calculate the Gross Value Added for different countries and industries using multi-regional input-output (MRIO) tables. However, I struggle to find a good explanation of how this is done based on the data available. The definition of the GVA (Gross Value Added) is the output of a country/industry less the intermediate consumption, and it is related to the GDP by:
GVA = GDP + subsidies - taxes
So far, I have used the "extensions" or "satellite accounts" that provide the Value Added (VA) disaggregated across different flows, i.e. example from Exiobase in the picture. The VA is the sum of all 12 to my understanding. However, based on the definition of the GVA, I have subtracted 1-3 since these are taxes (so GVA = sum of line 4-12). To me, this seems like the correct approach, but I have not succeeded in finding an explanation that could confirm/disprove. I also become uncertain due to the naming of the extension, i.e. "value added" sounding like "gross value added". Does anyone know the correct way of doing this?
Finally, in MRIO x is termed "gross output" being the total output to final demand + intermediate consumption:
x = Ax + y (Ax = intermediate, y = demand)
or
x = (I-A)^-1 * y = L*y (L = Leontif inverse/requirement matrix)
Does this mean that I can also derive the GVAs from x by subtracting the intermediate consumption? In my mind, this will just leave me with "y", but there might be a another smart way?
Thanks in advance!
From what I understand, yes you can !
You have to differentiate Z = Ax summed along its rows or along its columns
x - rowSum(Z) is the GVA.
x - colSum(Z) is the total final demand.
Regarding Exiobase, I don't have a real answer.
I found that summing all lines of the VA (keeping lines 1-3), I get "quasi" the same results as subtracting the row sum of Z to x.
Which is stange...

Finding the optimal selections of x number per column and y numbers per row of an NxM array

Given an NxM array of positive integers, how would one go about selecting integers so that the maximum sum of values is achieved where there is a maximum of x selections in each row and y selections in each column. This is an abstraction of a problem I am trying to face in making NCAA swimming lineups. Each swimmer has a time in every event that can be converted to an integer using the USA Swimming Power Points Calculator the higher the better. Once you convert those times, I want to assign no more than 3 swimmers per event, and no more than 3 races per swimmer such that the total sum of power scores is maximized. I think this is similar to the Weapon-targeting assignment problem but that problem allows a weapon type to attack the same target more than once (in my case allowing a single swimmer to race the same event twice) and that does not work for my use case. Does anybody know what this variation on the wta problem is called, and if so do you know of any solutions or resources I could look to?
Here is a mathematical model:
Data
Let a[i,j] be the data matrix
and
x: max number of selected cells in each row
y: max number of selected cells in each column
(Note: this is a bit unusual: we normally reserve the names x and y for variables. These conventions can help with readability).
Variables
δ[i,j] ∈ {0,1} are binary variables indicating if cell (i,j) is selected.
Optimization Model
max sum((i,j), a[i,j]*δ[i,j])
sum(j,δ[i,j]) ≤ x ∀i
sum(i,δ[i,j]) ≤ y ∀j
δ[i,j] ∈ {0,1}
This can be fed into any MIP solver.

Creating a dynamic array with given probabilities in Excel

I want to create a dynamic array that returns me X values based on given probabilities. For instance:
Imagine this is a gift box and you can open the box N times. What I want is to have N random results. For example, I want to get randomly 5 of these two rarities but based on their chances.
I have this following formula for now:
=index(A2:A3,randarray(5,1,1,rows(A2:A3),1). And this is the output I get:
The problem here is that I have a dynamic array with the 5 results BUT NOT BASED ON THE PROBABILITIES.
How can I add probabilities to the array?
Here is how you could generate a random outcome with defined probabilities for the entries (Google Sheets solution, not sure about Excel):
=ARRAYFORMULA(
VLOOKUP(
RANDARRAY(H1, 1),
{
{0; OFFSET(C2:C,,, COUNTA(C2:C) - 1)},
OFFSET(A2:A,,, COUNTA(C2:C))
},
2
)
)
This whole subject of random selection was treated very thoroughly in Donald Knuth's series of books, The Art of Computer Programming, vol 2, "Semi-Numerical Algorithms". In that book he presents an algorithm for selecting exactly X out of N items in a list using pseudo-random numbers. What you may not have considered is that after you have chosen your first item the probability array has changed to (X-1)/(N-1) if your first outcome was "Normal" or X/(N-1) if your first outcome was "Rare". This means you'll want to keep track of some running totals based on your prior outcomes to ensure your probabilities are dynamically updated with each pick. You can do this with formulas, but I'm not certain how the back-reference will perform inside an array formula. Microsoft's dynamic array documentation indicates that such internal array references are considered "circular" and are prohibited.
In any case, trying to extend this to 3+ outcomes is very problematic. In order to implement that algorithm with 3 choices (X + Y + Z = N picks) you would need to break this up into one random number for an X or not X choice and then a second random number for a Y or not Y choice. This becomes a recursive algorithm, beyond Excel's ability to cope in formulas.

Inverse CDF of Poisson dist in Excel

I want to know is there a function to calculate the inverse cdf of poisson distribution? So that I can use inverse CDF of poisson to generate a set of poisson distributed random number.
A) Inverse CDF of Poisson distribution
The inverse CDF at q is also referred to as the q quantile of a distribution. For a discrete distribution distribution . the inverse CDF at q is the smallest integer x such that CDF[dist,x]≥q.. The Poisson distribution is a discrete distribution that models the number of events based on a constant rate of occurrence. The Poisson distribution can be used as an approximation to the binomial when the number of independent trials is large and the probability of success is small. A common application of the Poisson distribution is predicting the number of events over a specific time, such as the number of cars arriving at a toll plaza in 1 minute.
Formula
The probability mass function (PMF) is:
mean = λ
variance = λ
Notation
Term Description
e base of the natural logarithm
Reference: Methods and Formulas for Inverse Cumulative Distribution Functions
B) Excel Function: Excel provides the following function for the Poisson distribution:
POISSON(x, μ, cum)
where μ = the mean of the distribution and cum takes the values TRUE and FALSE
POISSON(x, μ, FALSE) = probability density function value f(x) at the value x for the Poisson distribution with mean μ.
POISSON(x, μ, TRUE)= cumulative probability distribution function F(x) at the value x for the Poisson distribution with mean μ.
Excel 2010/2013/2016 provide the additional function POISSON.DIST which is equivalent to POISSON.
Reference: Office Support POISSON.DIST Function
C) Excel doesn’t provide a worksheet function for the inverse of the Poisson distribution.
Instead you can use the following function provided by the Real Statistics Resource Pack. It’s a free download for Excel various versions.
POISSON_INV(p, μ) = smallest integer x such that POISSON(x, μ, TRUE) ≥ p
Note that the maximum value of x is 1,024,000,000. A value higher than this indicates an error.
Reference: Real Statistics Using Excel
D)
Reference to MREXCEL.COM web site a query related to your question quoted below seems to be related to your question.
Not sure if anyone can help with this. Basically I'm trying to find out how to apply the reverse of the Poisson function in excel. So as of now I have poisson(x value, mean, true-cumulative) and that lets me get the probability for that occurence. Basically I want to know how I can get the minimum/maximum x value based on a given probability.
So if I have a list of data (700 rows) and I want to find out what the minimum starting value should be given a desired average and the fact that I want the lowest value to be at the 0.05% probability. So 0.05% = (x, 35, True) solve for x. I know I can prob do this with solver, but I am trying to figure out a way to do this formulaicly without having to use the solver (as I may have to use this many times).
The code referred to here covers the inverse of the poisson formula when using True in the excel formula. It does not cover the inverse of the poisson formula when using False in the excel formula.
Re: Reverse Poisson?
Originally Posted by shg
A further mod to accommodate large means:
Code:
Function PoissonInv(Prob As Double, Mean As Double) As Variant
' shg 2011, 2012, 2014, 2015-0415
' For a Poisson process with mean Mean, returns a three-element array:
' o The smallest integer N such that POISSON(N, Mean, True) >= Prob
' o The CDF for N-1 (which is < Prob)
' o The CDF for N (which is >= Prob)
-------Reference :> https://www.mrexcel.com/forum/excel-questions/507508-reverse-poisson-2.html>
E) Why doesn't Excel have a POISSON.INV function?
Discussion on Referred web page have references to some formulas for calculating related information desired by OP.
You could use the following.
With the Poisson mean named lambda, enter the following in an newly inserted worksheet.
A1: =IF(ROWS(A$1:A1)<=4*lambda,POISSON(ROWS(A$1:A1)-1,lambda,1))
Fill A1 down into A2:A1000 (4 times as many rows as your most typical lambda value). Name the A1:A1000 range POISSON.CDF. Then use the formula
=MATCH(n,POISSON.CDF)-1
to give the results a POISSON.INV(n,lambda) function would.
If you want this for varying lambda, use the array formula
=MATCH(n,POISSON(ROW($A$1:INDEX($A:$A,4*lambda+1),lambda,1))-1
Reference Shared Link
Hope That Helps.
=MATCH(RAND(),MMULT((ROW(INDIRECT(ADDRESS(1,1)&":"&ADDRESS(MAX(lambda,5+lambda* 45/50)+6* SQRT(lambda)+3,1)))=COLUMN(INDIRECT(ADDRESS(1,1)&":"&ADDRESS(1,MAX(lambda,5+lambda* 45/50)+6* SQRT(lambda)+2))))+0,MMULT((ROW(INDIRECT(ADDRESS(1,1)&":"&ADDRESS(MAX(lambda,5+lambda* 45/50)+6* SQRT(lambda)+2,1)))=(COLUMN(INDIRECT(ADDRESS(1,1)&":"&ADDRESS(1,MAX(lambda,5+lambda* 45/50)+6* SQRT(lambda)+1)))+1))+0,POISSON(ROW($A$1:INDEX($A:$A,MAX(lambda,5+lambda* 45/50)+6* SQRT(lambda)+1))-1,lambda,1)))+(ROW(INDIRECT(ADDRESS(1,1)&":"&ADDRESS(MAX(lambda,5+lambda* 45/50)+6* SQRT(lambda)+3,1)))=(COLUMN(INDIRECT(ADDRESS(1,1)&":"&ADDRESS(1,1)))+FLOOR(MAX(lambda,5+lambda* 45/50)+6* SQRT(lambda)+2,1)))+0)-1
It is quite slow for lambda >1000.
This expands on the array formula
=MATCH(C4,POISSON(ROW($A$1:INDEX($A:$A,4*lambda+1)),lambda,1))-1
shared above by skkakkar, by prepending the array with 0 and appending with 1, following Is there a way to concatenate two arrays in Excel without VBA? .
The rest is mostly making the array shorter by replacing 4* lambda with 6* SQRT(lambda).

How to produce a table of three inputs to reach a given output? (Excel model)

I have a very detailed excel model to calculate the profitability of a project, that we can call P.
The model has been simplified to compute from 3 unrelated variables. I would like to automatically create a table that shows how inputs A, B and C might vary in order to produce a pre-defined level of profitability, P. For instance, if A = 4 & B = 30, then C must = 2 in order for P to equal 20%. Likewise, if A = 5 & B = 25, then C must = 3 in order for P to equal 20%. A and B should be tested at sensible increments, perhaps 8 intervals each.
A laborious (not scalable) equivalent would be to manually define A and B, then goal-seek C to our pre-defined level of P - we'd then repeat for each combination of A and B at the given intervals and record in a two-way table.
I believe a conventional two-way data table would be pratical if the model sitting behind the inputs were greatly simplified, unfortunately this isn't possible.
Thanks to anyone that can lend a hand. Kind regards.
I think the best way to approach this will be with a VBA macro and the prebuilt GoalSeek Function something like this (p is in cell D1) :
Range(”D1”).GoalSeek Goal:=20 _
ChangingCell:=Range(“C1”)

Resources