How to find missing character in the second string when we compare two strings? - Coding Question - string

If String a = "abbc" and String b="abc", we have to print that character 'b' is missing in the second string.
I want to do it by using Java. I am able to do it when String 2 has a character not present in String 1 when s1=abc and s2=abk but not when characters are same in both strings like the one I have mentioned in the question.
public class Program
{
public static void main(String[] args) {
String str1 = "abbc";
String str2 = "abc";
char first[] = str1.toCharArray();
char second[] = str2.toCharArray();
HashMap <Character, Integer> map1 = new HashMap<Character,Integer>();
for(char a: first){
if(!map1.containsKey(a)){
map1.put(a,1);
}else{
map1.put(a,map1.get(a)+1);
}
}
System.out.println(map1);
HashMap <Character, Integer> map2 = new HashMap<Character,Integer>();
for(char b: second){
if(!map2.containsKey(b)){
map2.put(b,1);
}else{
map2.put(b,map2.get(b)+1);
}
}
System.out.println(map2);
}
}
I have two hashmaps here one for the longer string and one for the shorter string, map1 {a=1,b=2,c=1} and map2 {a=1,b=1,c=1}. What should I do after this?

Let assume that we have two strings a and b.
(optional) Compare lengths to find longer one.
Iterate over them char by char and compare letters at same index.
If both letters are the same, ignore it. If different, add letter from longer string to result and increment index of the longer string by 1.
What's left in longer string is your result.
Pseudocode:
const a = "aabbccc"
const b = "aabcc"
let res = ""
for (let i = 0, j = 0; i <= a.length; i++, j++) {
if (a[i] !== b[j]) {
res += a[i]
i++
}
}
console.log(res)
More modern and elegant way using high order functions:
const a = "aabbccc"
const b = "aabcc"
const res = [...a].reduce((r, e, i) => e === b[i - r.length] ? r : r + e, "")
console.log(res)

Related

Program to find if a string is a palindrome keeps on failing. Even after using toLowerCase() command for both strings, output doesn't come

import java.util.Scanner;
class Palindrome_string
{
public static void main()
{
System.out.println("\f");
Scanner sc = new Scanner(System.in);
System.out.println("Enter a string");
String a = sc.nextLine();
int b = a.length();
String rev = "";
for (int i = b - 1; i >= 0; i--)
{
char c = a.charAt(i);
rev = rev + c;
}
System.out.println("Original word "+a);
System.out.println("Reversed word "+rev);
a = a.toLowerCase();
rev = rev.toLowerCase();
if (a == rev)
{
System.out.println("It is a palindrome");
}
else
{
System.out.println("It is not a palindrome");
}
sc.close();
}
}
The program compiles properly. Still, when running the program, the message which tells if it is a palindrome prints incorrectly. What changes do I make? Here is a picture of the output. Even though the word 'level' (which is a palindrome) has been inputted, it shows that it isn't a palindrome. What changes should I make? output pic
You should not use == to compare two strings because it compares the reference of the string, i.e. whether they are the same object or not.
Use .equals() instead. It tests for value equality. So in your case:
if (a.equals(rev))
{
System.out.println("It is a palindrome");
}
Also try not to use single-letter variable names except for index variables when iterating over a list etc. It's bad practice.

Dynamic character generator; Generate all possible strings from a character set

I want to make a dynamic string generator that will generate all possible unique strings from a character set with a dynamic length.
I can make this very easily using for loops but then its static and not dynamic length.
// Prints all possible strings with the length of 3
for a in allowedCharacters {
for b in allowedCharacters {
for c in allowedCharacters {
println(a+b+c)
}
}
}
But when I want to make this dynamic of length so I can just call generate(length: 5) I get confused.
I found this Stackoverflow question But the accepted answer generates strings 1-maxLength length and I want maxLength on ever string.
As noted above, use recursion. Here is how it can be done with C#:
static IEnumerable<string> Generate(int length, char[] allowed_chars)
{
if (length == 1)
{
foreach (char c in allowed_chars)
yield return c.ToString();
}
else
{
var sub_strings = Generate(length - 1, allowed_chars);
foreach (char c in allowed_chars)
{
foreach (string sub in sub_strings)
{
yield return c + sub;
}
}
}
}
private static void Main(string[] args)
{
string chars = "abc";
List<string> result = Generate(3, chars.ToCharArray()).ToList();
}
Please note that the run time of this algorithm and the amount of data it returns is exponential as the length increases which means that if you have large lengths, you should expect the code to take a long time and to return a huge amount of data.
Translation of #YacoubMassad's C# code to Swift:
func generate(length: Int, allowedChars: [String]) -> [String] {
if length == 1 {
return allowedChars
}
else {
let subStrings = generate(length - 1, allowedChars: allowedChars)
var arr = [String]()
for c in allowedChars {
for sub in subStrings {
arr.append(c + sub)
}
}
return arr
}
}
println(generate(3, allowedChars: ["a", "b", "c"]))
Prints:
aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc
While you can (obviously enough) use recursion to solve this problem, it quite an inefficient way to do the job.
What you're really doing is just counting. In your example, with "a", "b" and "c" as the allowed characters, you're counting in base 3, and since you're allowing three character strings, they're three digit numbers.
An N-digit number in base M can represent NM different possible values, going from 0 through NM-1. So, for your case, that's limit=pow(3, 3)-1;. To generate all those values, you just count from 0 through the limit, and convert each number to base M, using the specified characters as the "digits". For example, in C++ the code can look like this:
#include <string>
#include <iostream>
int main() {
std::string letters = "abc";
std::size_t base = letters.length();
std::size_t digits = 3;
int limit = pow(base, digits);
for (int i = 0; i < limit; i++) {
int in = i;
for (int j = 0; j < digits; j++) {
std::cout << letters[in%base];
in /= base;
}
std::cout << "\t";
}
}
One minor note: as I've written it here, this produces the output in basically a little-endian format. That is, the "digit" that varies the fastest is on the left, and the one that changes the slowest is on the right.

Check if a string is a shuffle of two other given strings

This is a question from The Algorithm Design Manual:
Suppose you are given three strings of characters: X, Y, and Z, where |X| = n,
|Y| = m, and |Z| = n+m. Z is said to be a shuffle of X and Y if and only if Z can be formed by interleaving the characters from X and Y in a way that maintains the left-to ­right ordering of the characters from each string.
Give an efficient dynamic ­programming algorithm that determines whether Z is a shuffle of X and Y.
Hint: the values of the dynamic programming matrix you construct should be Boolean, not numeric
This is what I tried:
Initially, I made a 1-D char array and pointers to the starting characters of X,Y,Z respectively. If Z-pointer with matches X-pointer store X in the char array else check the same with Y-pointer.If each entry in the char array is not different from its last entry, Z is not interleaved.
Can someone help me with this problem?
First, let's start with some definitions. I write X[i] for the ith element of X and X[i) for the substring of X starting at index i.
For example, if X = abcde, then X[2] = c and X[2) = cde.
Similar definitions hold for Y and Z.
To solve the problem by dynamic programming, you should keep a 2D boolean array A of size (n+1) x (m+1). In this array, A[i, j] = true if and only if X[i) and Y[j) can be interleaved to form Z[i+j).
For an arbitrary (i, j), somewhere in the middle of the 2D array, the recurrence relation is very simple:
A[i, j] := X[i] = Z[i+j] and A[i+1, j]
or Y[j] = Z[i+j] and A[i, j+1]
On the edges of the 2D array you have the case that either X or Y is already at its end, which means the suffix of the other should be equal to the suffix of Z:
A[m, j] := Y[j) = Z[m+j)
A[i, n] := X[i) = Z[i+n)
A[m, n] := true
If you first fill the border of the array (A[m, j] and A[i, n], for all i, j), you can then simply loop back towards A[0, 0] and set the entries appropriately. In the end A[0, 0] is your answer.
Following approach should give you an idea.
Define the condition d(s1,s2,s3) = (s1 + s2 == s3) { s3 is a shuffle of s1 and s2 }
We have to find d( X, Y, Z ).
if lengths of s1 and s2 are 1 each and length of s3 = 2,
d( s1,s2,s3 ) = { (s1[0] == s3[0] && s2[0] == s3[1]) || (s1[0] == s3[1] && s2[0] == s3[0])
Similarly d can be obtained for empty strings.
For strings of arbitrary length, following relation holds.
d( s1,s2,s3 ) = { ( d( s1-s1[last],s2,s3 - s3[last]) && s1[last] == s3[last] )
|| ( d( s1,s2 - s2[last],s3 - s3[last]) && s2[last] == s3[last] )
}
You can compute the d() entries starting from zero length strings and keep checking.
It is defined by following recurrence relation:-
S(i,j,k) = false
if(Z(i)==Y(k))
S(i,j,k) = S(i,j,k)||S(i+1,j,k+1)
if(Z(i)==X(j))
S(i,j,k) = S(i,j,k)||S(i+1,j+1,k)
Where S(i,j,k) corresponds to Z[i to end] formed by shuffle of X[j to end] and Y[K to end]
You should try to code this into DP on your own.
I think this is quite easy if you are solving this problem by using this approach with java
Java Based Solution
public class ValidShuffle {
public static void main(String[] args) {
String s1 = "XY";
String s2 = "12";
String results = "Y21XX";
validShuffle(s1, s2, results);
}
private static void validShuffle(String s1, String s2, String result) {
String s3 = s1 + s2;
StringBuffer s = new StringBuffer(s3);
boolean flag = false;
char[] ch = result.toCharArray();
if (s.length() != result.length()) {
flag = false;
} else {
for (int i = 0; i < ch.length; i++) {
String temp = Character.toString(ch[i]);
if (s3.contains(temp)) {
s = s.deleteCharAt(s.indexOf(temp));
s3 = new String(s);
flag = true;
} else {
flag = false;
break;
}
}
}
if (flag) {
System.out.println("Yes");
} else {
System.out.println("No");
}
}
}
If any problem in my code then comment me please. thank you
function checkShuffle(str1, str2, str3) {
var merge=str1+str2;
var charArr1= merge.split("").sort();
var charArr2= str3.split("").sort();
for(i=0;i<str3.length;i++){
if(charArr1[i] == charArr2[i]){
return true;
}
}
return false;
}
checkShuffle("abc", "def", "dfabce"); //output is true
JAVASCRIPT BASED SOLUTION
const first = "bac";
const second = "def"
const third = "dabecf";
function createDict(seq,str){
let strObj = {};
str = str.split("");
str.forEach((letter,index)=>{
strObj[letter] = {
wordSeq: seq,
index : index
} ;
})
return strObj;
}
function checkShuffleValidity(thirdWord,firstWord,secondWord){
let firstWordDict = createDict('first',firstWord);
let secondWordDict = createDict('second',secondWord);
let wordDict = {...firstWordDict,...secondWordDict};
let firstCount=0,secondCount = 0;
thirdWord = thirdWord.split("");
for(let i=0; i<thirdWord.length; i++){
let letter = thirdWord[i];
if(wordDict[letter].wordSeq == "first"){
if(wordDict[letter].index === firstCount){
firstCount++;
}else{
return false
}
}else{
if(wordDict[letter].index === secondCount){
secondCount++;
}else{
return false;
}
}
}
return true;
}
console.log(checkShuffleValidity(third,first,second));
Key points:
All strings shouldn't be null or empty.
The sum of the 2 strings length should be equal to the third string.
The third string should not contain the substrings of the 2 strings.
Else create arrays of characters , sort and compare.
Code:
public static boolean validShuffle(String first, String second, String third){
boolean status=false;
if((first==null || second==null || third==null) || (first.isEmpty()|| second.isEmpty() || third.isEmpty())){
status = false;
} else if((first.length()+second.length()) !=third.length()){
//check if the sum of 2 lengths equals to the third string length
status = false;
} else if(third.indexOf(first,0)!=-1 || third.indexOf(second,0)!=-1){
//check if the third string contains substrings
status = false;
} else {
char [] c1_2=(first+second).toCharArray();
char [] c3 =third.toCharArray();
Arrays.sort(c1_2);
Arrays.sort(c3);
status=Arrays.equals(c1_2, c3);
}
return status;
}

how to get partial string seperated by commas?

I have a string:
string mystring="part1, part2, part3, part4, part5";
How can I just return the first 3 elements without splitting them up first?
so like this:
string newstring="part1, part2, part3";
You could get the first three using:
RegEx r = new RegEx(#"(\S+, \S+, \S+), \S+");
I'm sure there is a better way to write the regex, but I think that would do it for basic inputs.
Try to find Index of 3rd Comma, and then get the substring.
Example
void Main()
{
string mystring="part1, part2, part3, part4, part5";
int thirdCommaIndex = IndexOf(mystring, ',', 3);
var substring = mystring.Substring(0,thirdCommaIndex-1);
Console.WriteLine(substring);
}
int IndexOf(string s, char c, int n)
{
int index = 0;
int count = 0;
foreach(char ch in s)
{
index++;
if (ch == c)
count++;
if (count == n )
break;
}
if (count == 0) index = -1;
return index;
}
This will parse the string trying to find the third comma and throwing it and everything after it away.
string mystring = "part1, part2, part3, part4, part5";
UInt16 CommasFound = 0;
UInt16 Location = 0;
for (Location = 0; (CommasFound < 3) &&
(Location < mystring.Count()); Location++)
if (mystring[Location].Equals(','))
CommasFound++;
if (CommasFound == 3)
{
string newstring = mystring.Substring(0, Location-1);
}
else { // Handle the case where there isn't a third item
}

Generate list of all possible permutations of a string

How would I go about generating a list of all possible permutations of a string between x and y characters in length, containing a variable list of characters.
Any language would work, but it should be portable.
There are several ways to do this. Common methods use recursion, memoization, or dynamic programming. The basic idea is that you produce a list of all strings of length 1, then in each iteration, for all strings produced in the last iteration, add that string concatenated with each character in the string individually. (the variable index in the code below keeps track of the start of the last and the next iteration)
Some pseudocode:
list = originalString.split('')
index = (0,0)
list = [""]
for iteration n in 1 to y:
index = (index[1], len(list))
for string s in list.subset(index[0] to end):
for character c in originalString:
list.add(s + c)
you'd then need to remove all strings less than x in length, they'll be the first (x-1) * len(originalString) entries in the list.
It's better to use backtracking
#include <stdio.h>
#include <string.h>
void swap(char *a, char *b) {
char temp;
temp = *a;
*a = *b;
*b = temp;
}
void print(char *a, int i, int n) {
int j;
if(i == n) {
printf("%s\n", a);
} else {
for(j = i; j <= n; j++) {
swap(a + i, a + j);
print(a, i + 1, n);
swap(a + i, a + j);
}
}
}
int main(void) {
char a[100];
gets(a);
print(a, 0, strlen(a) - 1);
return 0;
}
You are going to get a lot of strings, that's for sure...
Where x and y is how you define them and r is the number of characters we are selecting from --if I am understanding you correctly. You should definitely generate these as needed and not get sloppy and say, generate a powerset and then filter the length of strings.
The following definitely isn't the best way to generate these, but it's an interesting aside, none-the-less.
Knuth (volume 4, fascicle 2, 7.2.1.3) tells us that (s,t)-combination is equivalent to s+1 things taken t at a time with repetition -- an (s,t)-combination is notation used by Knuth that is equal to . We can figure this out by first generating each (s,t)-combination in binary form (so, of length (s+t)) and counting the number of 0's to the left of each 1.
10001000011101 --> becomes the permutation: {0, 3, 4, 4, 4, 1}
Non recursive solution according to Knuth, Python example:
def nextPermutation(perm):
k0 = None
for i in range(len(perm)-1):
if perm[i]<perm[i+1]:
k0=i
if k0 == None:
return None
l0 = k0+1
for i in range(k0+1, len(perm)):
if perm[k0] < perm[i]:
l0 = i
perm[k0], perm[l0] = perm[l0], perm[k0]
perm[k0+1:] = reversed(perm[k0+1:])
return perm
perm=list("12345")
while perm:
print perm
perm = nextPermutation(perm)
You might look at "Efficiently Enumerating the Subsets of a Set", which describes an algorithm to do part of what you want - quickly generate all subsets of N characters from length x to y. It contains an implementation in C.
For each subset, you'd still have to generate all the permutations. For instance if you wanted 3 characters from "abcde", this algorithm would give you "abc","abd", "abe"...
but you'd have to permute each one to get "acb", "bac", "bca", etc.
Some working Java code based on Sarp's answer:
public class permute {
static void permute(int level, String permuted,
boolean used[], String original) {
int length = original.length();
if (level == length) {
System.out.println(permuted);
} else {
for (int i = 0; i < length; i++) {
if (!used[i]) {
used[i] = true;
permute(level + 1, permuted + original.charAt(i),
used, original);
used[i] = false;
}
}
}
}
public static void main(String[] args) {
String s = "hello";
boolean used[] = {false, false, false, false, false};
permute(0, "", used, s);
}
}
Here is a simple solution in C#.
It generates only the distinct permutations of a given string.
static public IEnumerable<string> permute(string word)
{
if (word.Length > 1)
{
char character = word[0];
foreach (string subPermute in permute(word.Substring(1)))
{
for (int index = 0; index <= subPermute.Length; index++)
{
string pre = subPermute.Substring(0, index);
string post = subPermute.Substring(index);
if (post.Contains(character))
continue;
yield return pre + character + post;
}
}
}
else
{
yield return word;
}
}
There are a lot of good answers here. I also suggest a very simple recursive solution in C++.
#include <string>
#include <iostream>
template<typename Consume>
void permutations(std::string s, Consume consume, std::size_t start = 0) {
if (start == s.length()) consume(s);
for (std::size_t i = start; i < s.length(); i++) {
std::swap(s[start], s[i]);
permutations(s, consume, start + 1);
}
}
int main(void) {
std::string s = "abcd";
permutations(s, [](std::string s) {
std::cout << s << std::endl;
});
}
Note: strings with repeated characters will not produce unique permutations.
I just whipped this up quick in Ruby:
def perms(x, y, possible_characters)
all = [""]
current_array = all.clone
1.upto(y) { |iteration|
next_array = []
current_array.each { |string|
possible_characters.each { |c|
value = string + c
next_array.insert next_array.length, value
all.insert all.length, value
}
}
current_array = next_array
}
all.delete_if { |string| string.length < x }
end
You might look into language API for built in permutation type functions, and you might be able to write more optimized code, but if the numbers are all that high, I'm not sure there is much of a way around having a lot of results.
Anyways, the idea behind the code is start with string of length 0, then keep track of all the strings of length Z where Z is the current size in the iteration. Then, go through each string and append each character onto each string. Finally at the end, remove any that were below the x threshold and return the result.
I didn't test it with potentially meaningless input (null character list, weird values of x and y, etc).
This is a translation of Mike's Ruby version, into Common Lisp:
(defun perms (x y original-string)
(loop with all = (list "")
with current-array = (list "")
for iteration from 1 to y
do (loop with next-array = nil
for string in current-array
do (loop for c across original-string
for value = (concatenate 'string string (string c))
do (push value next-array)
(push value all))
(setf current-array (reverse next-array)))
finally (return (nreverse (delete-if #'(lambda (el) (< (length el) x)) all)))))
And another version, slightly shorter and using more loop facility features:
(defun perms (x y original-string)
(loop repeat y
collect (loop for string in (or (car (last sets)) (list ""))
append (loop for c across original-string
collect (concatenate 'string string (string c)))) into sets
finally (return (loop for set in sets
append (loop for el in set when (>= (length el) x) collect el)))))
Here is a simple word C# recursive solution:
Method:
public ArrayList CalculateWordPermutations(string[] letters, ArrayList words, int index)
{
bool finished = true;
ArrayList newWords = new ArrayList();
if (words.Count == 0)
{
foreach (string letter in letters)
{
words.Add(letter);
}
}
for(int j=index; j<words.Count; j++)
{
string word = (string)words[j];
for(int i =0; i<letters.Length; i++)
{
if(!word.Contains(letters[i]))
{
finished = false;
string newWord = (string)word.Clone();
newWord += letters[i];
newWords.Add(newWord);
}
}
}
foreach (string newWord in newWords)
{
words.Add(newWord);
}
if(finished == false)
{
CalculateWordPermutations(letters, words, words.Count - newWords.Count);
}
return words;
}
Calling:
string[] letters = new string[]{"a","b","c"};
ArrayList words = CalculateWordPermutations(letters, new ArrayList(), 0);
... and here is the C version:
void permute(const char *s, char *out, int *used, int len, int lev)
{
if (len == lev) {
out[lev] = '\0';
puts(out);
return;
}
int i;
for (i = 0; i < len; ++i) {
if (! used[i])
continue;
used[i] = 1;
out[lev] = s[i];
permute(s, out, used, len, lev + 1);
used[i] = 0;
}
return;
}
permute (ABC) -> A.perm(BC) -> A.perm[B.perm(C)] -> A.perm[(*BC), (CB*)] -> [(*ABC), (BAC), (BCA*), (*ACB), (CAB), (CBA*)]
To remove duplicates when inserting each alphabet check to see if previous string ends with the same alphabet (why? -exercise)
public static void main(String[] args) {
for (String str : permStr("ABBB")){
System.out.println(str);
}
}
static Vector<String> permStr(String str){
if (str.length() == 1){
Vector<String> ret = new Vector<String>();
ret.add(str);
return ret;
}
char start = str.charAt(0);
Vector<String> endStrs = permStr(str.substring(1));
Vector<String> newEndStrs = new Vector<String>();
for (String endStr : endStrs){
for (int j = 0; j <= endStr.length(); j++){
if (endStr.substring(0, j).endsWith(String.valueOf(start)))
break;
newEndStrs.add(endStr.substring(0, j) + String.valueOf(start) + endStr.substring(j));
}
}
return newEndStrs;
}
Prints all permutations sans duplicates
Recursive solution in C++
int main (int argc, char * const argv[]) {
string s = "sarp";
bool used [4];
permute(0, "", used, s);
}
void permute(int level, string permuted, bool used [], string &original) {
int length = original.length();
if(level == length) { // permutation complete, display
cout << permuted << endl;
} else {
for(int i=0; i<length; i++) { // try to add an unused character
if(!used[i]) {
used[i] = true;
permute(level+1, original[i] + permuted, used, original); // find the permutations starting with this string
used[i] = false;
}
}
}
In Perl, if you want to restrict yourself to the lowercase alphabet, you can do this:
my #result = ("a" .. "zzzz");
This gives all possible strings between 1 and 4 characters using lowercase characters. For uppercase, change "a" to "A" and "zzzz" to "ZZZZ".
For mixed-case it gets much harder, and probably not doable with one of Perl's builtin operators like that.
Ruby answer that works:
class String
def each_char_with_index
0.upto(size - 1) do |index|
yield(self[index..index], index)
end
end
def remove_char_at(index)
return self[1..-1] if index == 0
self[0..(index-1)] + self[(index+1)..-1]
end
end
def permute(str, prefix = '')
if str.size == 0
puts prefix
return
end
str.each_char_with_index do |char, index|
permute(str.remove_char_at(index), prefix + char)
end
end
# example
# permute("abc")
The following Java recursion prints all permutations of a given string:
//call it as permut("",str);
public void permut(String str1,String str2){
if(str2.length() != 0){
char ch = str2.charAt(0);
for(int i = 0; i <= str1.length();i++)
permut(str1.substring(0,i) + ch + str1.substring(i,str1.length()),
str2.substring(1,str2.length()));
}else{
System.out.println(str1);
}
}
Following is the updated version of above "permut" method which makes n! (n factorial) less recursive calls compared to the above method
//call it as permut("",str);
public void permut(String str1,String str2){
if(str2.length() > 1){
char ch = str2.charAt(0);
for(int i = 0; i <= str1.length();i++)
permut(str1.substring(0,i) + ch + str1.substring(i,str1.length()),
str2.substring(1,str2.length()));
}else{
char ch = str2.charAt(0);
for(int i = 0; i <= str1.length();i++)
System.out.println(str1.substring(0,i) + ch + str1.substring(i,str1.length()),
str2.substring(1,str2.length()));
}
}
import java.util.*;
public class all_subsets {
public static void main(String[] args) {
String a = "abcd";
for(String s: all_perm(a)) {
System.out.println(s);
}
}
public static Set<String> concat(String c, Set<String> lst) {
HashSet<String> ret_set = new HashSet<String>();
for(String s: lst) {
ret_set.add(c+s);
}
return ret_set;
}
public static HashSet<String> all_perm(String a) {
HashSet<String> set = new HashSet<String>();
if(a.length() == 1) {
set.add(a);
} else {
for(int i=0; i<a.length(); i++) {
set.addAll(concat(a.charAt(i)+"", all_perm(a.substring(0, i)+a.substring(i+1, a.length()))));
}
}
return set;
}
}
I'm not sure why you would want to do this in the first place. The resulting set for any moderately large values of x and y will be huge, and will grow exponentially as x and/or y get bigger.
Lets say your set of possible characters is the 26 lowercase letters of the alphabet, and you ask your application to generate all permutations where length = 5. Assuming you don't run out of memory you'll get 11,881,376 (i.e. 26 to the power of 5) strings back. Bump that length up to 6, and you'll get 308,915,776 strings back. These numbers get painfully large, very quickly.
Here's a solution I put together in Java. You'll need to provide two runtime arguments (corresponding to x and y). Have fun.
public class GeneratePermutations {
public static void main(String[] args) {
int lower = Integer.parseInt(args[0]);
int upper = Integer.parseInt(args[1]);
if (upper < lower || upper == 0 || lower == 0) {
System.exit(0);
}
for (int length = lower; length <= upper; length++) {
generate(length, "");
}
}
private static void generate(int length, String partial) {
if (length <= 0) {
System.out.println(partial);
} else {
for (char c = 'a'; c <= 'z'; c++) {
generate(length - 1, partial + c);
}
}
}
}
Here's a non-recursive version I came up with, in javascript.
It's not based on Knuth's non-recursive one above, although it has some similarities in element swapping.
I've verified its correctness for input arrays of up to 8 elements.
A quick optimization would be pre-flighting the out array and avoiding push().
The basic idea is:
Given a single source array, generate a first new set of arrays which swap the first element with each subsequent element in turn, each time leaving the other elements unperturbed.
eg: given 1234, generate 1234, 2134, 3214, 4231.
Use each array from the previous pass as the seed for a new pass,
but instead of swapping the first element, swap the second element with each subsequent element. Also, this time, don't include the original array in the output.
Repeat step 2 until done.
Here is the code sample:
function oxe_perm(src, depth, index)
{
var perm = src.slice(); // duplicates src.
perm = perm.split("");
perm[depth] = src[index];
perm[index] = src[depth];
perm = perm.join("");
return perm;
}
function oxe_permutations(src)
{
out = new Array();
out.push(src);
for (depth = 0; depth < src.length; depth++) {
var numInPreviousPass = out.length;
for (var m = 0; m < numInPreviousPass; ++m) {
for (var n = depth + 1; n < src.length; ++n) {
out.push(oxe_perm(out[m], depth, n));
}
}
}
return out;
}
In ruby:
str = "a"
100_000_000.times {puts str.next!}
It is quite fast, but it is going to take some time =). Of course, you can start at "aaaaaaaa" if the short strings aren't interesting to you.
I might have misinterpreted the actual question though - in one of the posts it sounded as if you just needed a bruteforce library of strings, but in the main question it sounds like you need to permutate a particular string.
Your problem is somewhat similar to this one: http://beust.com/weblog/archives/000491.html (list all integers in which none of the digits repeat themselves, which resulted in a whole lot of languages solving it, with the ocaml guy using permutations, and some java guy using yet another solution).
I needed this today, and although the answers already given pointed me in the right direction, they weren't quite what I wanted.
Here's an implementation using Heap's method. The length of the array must be at least 3 and for practical considerations not be bigger than 10 or so, depending on what you want to do, patience and clock speed.
Before you enter your loop, initialise Perm(1 To N) with the first permutation, Stack(3 To N) with zeroes*, and Level with 2**. At the end of the loop call NextPerm, which will return false when we're done.
* VB will do that for you.
** You can change NextPerm a little to make this unnecessary, but it's clearer like this.
Option Explicit
Function NextPerm(Perm() As Long, Stack() As Long, Level As Long) As Boolean
Dim N As Long
If Level = 2 Then
Swap Perm(1), Perm(2)
Level = 3
Else
While Stack(Level) = Level - 1
Stack(Level) = 0
If Level = UBound(Stack) Then Exit Function
Level = Level + 1
Wend
Stack(Level) = Stack(Level) + 1
If Level And 1 Then N = 1 Else N = Stack(Level)
Swap Perm(N), Perm(Level)
Level = 2
End If
NextPerm = True
End Function
Sub Swap(A As Long, B As Long)
A = A Xor B
B = A Xor B
A = A Xor B
End Sub
'This is just for testing.
Private Sub Form_Paint()
Const Max = 8
Dim A(1 To Max) As Long, I As Long
Dim S(3 To Max) As Long, J As Long
Dim Test As New Collection, T As String
For I = 1 To UBound(A)
A(I) = I
Next
Cls
ScaleLeft = 0
J = 2
Do
If CurrentY + TextHeight("0") > ScaleHeight Then
ScaleLeft = ScaleLeft - TextWidth(" 0 ") * (UBound(A) + 1)
CurrentY = 0
CurrentX = 0
End If
T = vbNullString
For I = 1 To UBound(A)
Print A(I);
T = T & Hex(A(I))
Next
Print
Test.Add Null, T
Loop While NextPerm(A, S, J)
J = 1
For I = 2 To UBound(A)
J = J * I
Next
If J <> Test.Count Then Stop
End Sub
Other methods are described by various authors. Knuth describes two, one gives lexical order, but is complex and slow, the other is known as the method of plain changes. Jie Gao and Dianjun Wang also wrote an interesting paper.
Here is a link that describes how to print permutations of a string.
http://nipun-linuxtips.blogspot.in/2012/11/print-all-permutations-of-characters-in.html
This code in python, when called with allowed_characters set to [0,1] and 4 character max, would generate 2^4 results:
['0000', '0001', '0010', '0011', '0100', '0101', '0110', '0111', '1000', '1001', '1010', '1011', '1100', '1101', '1110', '1111']
def generate_permutations(chars = 4) :
#modify if in need!
allowed_chars = [
'0',
'1',
]
status = []
for tmp in range(chars) :
status.append(0)
last_char = len(allowed_chars)
rows = []
for x in xrange(last_char ** chars) :
rows.append("")
for y in range(chars - 1 , -1, -1) :
key = status[y]
rows[x] = allowed_chars[key] + rows[x]
for pos in range(chars - 1, -1, -1) :
if(status[pos] == last_char - 1) :
status[pos] = 0
else :
status[pos] += 1
break;
return rows
import sys
print generate_permutations()
Hope this is of use to you. Works with any character, not only numbers
Many of the previous answers used backtracking. This is the asymptotically optimal way O(n*n!) of generating permutations after initial sorting
class Permutation {
/* runtime -O(n) for generating nextPermutaion
* and O(n*n!) for generating all n! permutations with increasing sorted array as start
* return true, if there exists next lexicographical sequence
* e.g [a,b,c],3-> true, modifies array to [a,c,b]
* e.g [c,b,a],3-> false, as it is largest lexicographic possible */
public static boolean nextPermutation(char[] seq, int len) {
// 1
if (len <= 1)
return false;// no more perm
// 2: Find last j such that seq[j] <= seq[j+1]. Terminate if no such j exists
int j = len - 2;
while (j >= 0 && seq[j] >= seq[j + 1]) {
--j;
}
if (j == -1)
return false;// no more perm
// 3: Find last l such that seq[j] <= seq[l], then exchange elements j and l
int l = len - 1;
while (seq[j] >= seq[l]) {
--l;
}
swap(seq, j, l);
// 4: Reverse elements j+1 ... count-1:
reverseSubArray(seq, j + 1, len - 1);
// return seq, add store next perm
return true;
}
private static void swap(char[] a, int i, int j) {
char temp = a[i];
a[i] = a[j];
a[j] = temp;
}
private static void reverseSubArray(char[] a, int lo, int hi) {
while (lo < hi) {
swap(a, lo, hi);
++lo;
--hi;
}
}
public static void main(String[] args) {
String str = "abcdefg";
char[] array = str.toCharArray();
Arrays.sort(array);
int cnt=0;
do {
System.out.println(new String(array));
cnt++;
}while(nextPermutation(array, array.length));
System.out.println(cnt);//5040=7!
}
//if we use "bab"-> "abb", "bab", "bba", 3(#permutations)
}
Recursive Approach
func StringPermutations(inputStr string) (permutations []string) {
for i := 0; i < len(inputStr); i++ {
inputStr = inputStr[1:] + inputStr[0:1]
if len(inputStr) <= 2 {
permutations = append(permutations, inputStr)
continue
}
leftPermutations := StringPermutations(inputStr[0 : len(inputStr)-1])
for _, leftPermutation := range leftPermutations {
permutations = append(permutations, leftPermutation+inputStr[len(inputStr)-1:])
}
}
return
}
Though this doesn't answer your question exactly, here's one way to generate every permutation of the letters from a number of strings of the same length: eg, if your words were "coffee", "joomla" and "moodle", you can expect output like "coodle", "joodee", "joffle", etc.
Basically, the number of combinations is the (number of words) to the power of (number of letters per word). So, choose a random number between 0 and the number of combinations - 1, convert that number to base (number of words), then use each digit of that number as the indicator for which word to take the next letter from.
eg: in the above example. 3 words, 6 letters = 729 combinations. Choose a random number: 465. Convert to base 3: 122020. Take the first letter from word 1, 2nd from word 2, 3rd from word 2, 4th from word 0... and you get... "joofle".
If you wanted all the permutations, just loop from 0 to 728. Of course, if you're just choosing one random value, a much simpler less-confusing way would be to loop over the letters. This method lets you avoid recursion, should you want all the permutations, plus it makes you look like you know Maths(tm)!
If the number of combinations is excessive, you can break it up into a series of smaller words and concatenate them at the end.
c# iterative:
public List<string> Permutations(char[] chars)
{
List<string> words = new List<string>();
words.Add(chars[0].ToString());
for (int i = 1; i < chars.Length; ++i)
{
int currLen = words.Count;
for (int j = 0; j < currLen; ++j)
{
var w = words[j];
for (int k = 0; k <= w.Length; ++k)
{
var nstr = w.Insert(k, chars[i].ToString());
if (k == 0)
words[j] = nstr;
else
words.Add(nstr);
}
}
}
return words;
}
def gen( x,y,list): #to generate all strings inserting y at different positions
list = []
list.append( y+x )
for i in range( len(x) ):
list.append( func(x,0,i) + y + func(x,i+1,len(x)-1) )
return list
def func( x,i,j ): #returns x[i..j]
z = ''
for i in range(i,j+1):
z = z+x[i]
return z
def perm( x , length , list ): #perm function
if length == 1 : # base case
list.append( x[len(x)-1] )
return list
else:
lists = perm( x , length-1 ,list )
lists_temp = lists #temporarily storing the list
lists = []
for i in range( len(lists_temp) ) :
list_temp = gen(lists_temp[i],x[length-2],lists)
lists += list_temp
return lists
def permutation(str)
posibilities = []
str.split('').each do |char|
if posibilities.size == 0
posibilities[0] = char.downcase
posibilities[1] = char.upcase
else
posibilities_count = posibilities.length
posibilities = posibilities + posibilities
posibilities_count.times do |i|
posibilities[i] += char.downcase
posibilities[i+posibilities_count] += char.upcase
end
end
end
posibilities
end
Here is my take on a non recursive version

Resources