Get a certain combination of numbers in Python - python-3.x

Is there a efficient and convenient solution in Python to do something like -
Find largest combination of two numbers x and y, with the following conditions -
0 < x < 1000
0 < y < 2000
x/y = 0.75
x & y are integers
It's easy to do it using a simple graphing calculator but trying to find the best way to do it in Python

import pulp
My_optimization_prob = pulp.LpProblem('My_Optimization_Problem', pulp.LpMaximize)
# Creating the variables
x = pulp.LpVariable("x", lowBound = 1, cat='Integer')
y = pulp.LpVariable("y", lowBound = 1, cat='Integer')
# Adding the Constraints
My_optimization_prob += x + y #Maximize X and Y
My_optimization_prob += x <= 999 # x < 1000
My_optimization_prob += y <= 1999 # y < 2000
My_optimization_prob += x - 0.75*y == 0 # x/y = 0.75
#Printing the Problem and Constraints
print(My_optimization_prob)
My_optimization_prob.solve()
#printing X Y
print('x = ',pulp.value(x))
print('y = ',pulp.value(y))

Probably just -
z = [(x, y) for x in range(1, 1000) for y in range(1, 2000) if x/y==0.75]
z.sort(key=lambda x: sum(x), reverse=True)
z[0]
#Returns (999, 1332)
This is convenient, not sure if this is the most efficient way.

Another possible relatively efficient solution is -
x_upper_limit = 1000
y_upper_limit = 2000
x = 0
y = 0
temp_variable = 0
ratio = 0.75
for i in range(x_upper_limit, 0, -1):
temp_variable = i/ratio
if temp_variable.is_integer() and temp_variable < y_upper_limit:
x = i
y = int(temp_variable)
break
print(x,y)

Related

Simpson's rule 3/8 for n intervals in Python

im trying to write a program that gives the integral approximation of e(x^2) between 0 and 1 based on this integral formula:
Formula
i've done this code so far but it keeps giving the wrong answer (Other methods gives 1.46 as an answer, this one gives 1.006).
I think that maybe there is a problem with the two for cycles that does the Riemman sum, or that there is a problem in the way i've wrote the formula. I also tried to re-write the formula in other ways but i had no success
Any kind of help is appreciated.
import math
import numpy as np
def f(x):
y = np.exp(x**2)
return y
a = float(input("¿Cual es el limite inferior? \n"))
b = float(input("¿Cual es el limite superior? \n"))
n = int(input("¿Cual es el numero de intervalos? "))
x = np.zeros([n+1])
y = np.zeros([n])
z = np.zeros([n])
h = (b-a)/n
print (h)
x[0] = a
x[n] = b
suma1 = 0
suma2 = 0
for i in np.arange(1,n):
x[i] = x[i-1] + h
suma1 = suma1 + f(x[i])
alfa = (x[i]-x[i-1])/3
for i in np.arange(0,n):
y[i] = (x[i-1]+ alfa)
suma2 = suma2 + f(y[i])
z[i] = y[i] + alfa
int3 = ((b-a)/(8*n)) * (f(x[0])+f(x[n]) + (3*(suma2+f(z[i]))) + (2*(suma1)))
print (int3)
I'm not a math major but I remember helping a friend with this rule for something about waterplane area for ships.
Here's an implementation based on Wikipedia's description of the Simpson's 3/8 rule:
# The input parameters
a, b, n = 0, 1, 10
# Divide the interval into 3*n sub-intervals
# and hence 3*n+1 endpoints
x = np.linspace(a,b,3*n+1)
y = f(x)
# The weight for each points
w = [1,3,3,1]
result = 0
for i in range(0, 3*n, 3):
# Calculate the area, 4 points at a time
result += (x[i+3] - x[i]) / 8 * (y[i:i+4] * w).sum()
# result = 1.4626525814387632
You can do it using numpy.vectorize (Based on this wikipedia post):
a, b, n = 0, 1, 10**6
h = (b-a) / n
x = np.linspace(0,n,n+1)*h + a
fv = np.vectorize(f)
(
3*h/8 * (
f(x[0]) +
3 * fv(x[np.mod(np.arange(len(x)), 3) != 0]).sum() + #skip every 3rd index
2 * fv(x[::3]).sum() + #get every 3rd index
f(x[-1])
)
)
#Output: 1.462654874404461
If you use numpy's built-in functions (which I think is always possible), performance will improve considerably:
a, b, n = 0, 1, 10**6
x = np.exp(np.square(np.linspace(0,n,n+1)*h + a))
(
3*h/8 * (
x[0] +
3 * x[np.mod(np.arange(len(x)), 3) != 0].sum()+
2 * x[::3].sum() +
x[-1]
)
)
#Output: 1.462654874404461

How to solve Equation without any Modules in Python?

I want to solve this equation without any Modules(NumPy, Sympy... etc.)
Px + Qy = W
(ex. 5x + 6y = 55)
Thanks.
It is a very crude way to do this, but you can use brute-force technique, as I said in comment under your question. It can probably be optimized a lot, gives only int outputs, but overall shows the method:
import numpy as np
# Provide the equation:
print("Provide a, b and c to evaluate in equation of form {ax + by - c = 0}")
a = float(input("a: "))
b = float(input("b: "))
c = float(input("c: "))
x_range = int(input("x-searching range (-a, a): "))
y_range = int(input("y-searching range (-b, b): "))
error = float(input("maximum accepted error from the exact solution: "))
x_range = np.arange(-x_range, x_range, 1)
y_range = np.arange(-y_range, y_range, 1)
for x in x_range:
for y in y_range:
if -error <= a * x + b * y - c <= error:
print("Got an absolute error of {} or less with numbers x = {} and y = {}.".format(error, x, y))
Example output for a = 1, b = 2, c = 3, x_range = 10, y_range = 10, error = 0.001:
Got an error of 0.001 or less with numbers x = -9 and y = 6.
Got an error of 0.001 or less with numbers x = -7 and y = 5.
Got an error of 0.001 or less with numbers x = -5 and y = 4.
Got an error of 0.001 or less with numbers x = -3 and y = 3.
Got an error of 0.001 or less with numbers x = -1 and y = 2.
Got an error of 0.001 or less with numbers x = 1 and y = 1.
Got an error of 0.001 or less with numbers x = 3 and y = 0.
Got an error of 0.001 or less with numbers x = 5 and y = -1.
Got an error of 0.001 or less with numbers x = 7 and y = -2.
Got an error of 0.001 or less with numbers x = 9 and y = -3.
I am using numpy, but not a built-in function to solve the equation itself, just to create an array. This can be done without it, of course.
There are thousands of ways to solve an equation with python.
One of those is:
def myfunc (x=None, y=None):
return ((55-6*y)/5.0) if y else ((55-5*x)/6.0)
print(myfunc(x=10)) # OUTPUT: 0.833333333333, y value for x == 10
print(myfunc(y=42)) # OUTPUT: -39.4, x value for y == 42
You simply define inside a function the steps required to solve the equation.
In our example, if we have y value we subtract 6*y to 55 then we divide by 5.0 (we add .0 to have a float as result), otherwise (means we have x) we subtract 5*x from 55 and then we divide by 6.0
with the same principle, you can generalize:
def myfunc (x=None, y=None, P=None, Q=None, W=None):
if not W:
return P*x + Q*y
elif not x:
return (W-Q*y)/float(P)
elif not y:
return (W-P*x)/float(Q)
elif not P:
return (W-Q*y)/float(x)
elif not Q:
return (W-P*x)/float(y)
print(myfunc(x=10, P=5, Q=6, W=55)) # OUTPUT: 0.833333333333, y value for x == 10
print(myfunc(y=42, P=5, Q=6, W=55)) # OUTPUT: -39.4, x value for y == 42
check this QA for some other interesting ways to approach this problem

How to make algorithm of counting big negative numbers faster?

I was trying to do a program which can take square matrix of any size and find two any square submatrixes(they shouldn't overlap), whose qualities are the closest. So every elementary square in matrix has a quality(any number). The problem is algorithm is too slow with processing matrixes 100*100 containing big negative numbers(-10^8).
from collections import defaultdict
from math import fsum
from itertools import islice, count
def matrix():
matritsa = list()
koord = list()
ssum = 0
diff = defaultdict(list)
size = int(input()) #size of the matrix
for line in range(size):
matritsa += list(map(int,input().split())) #filling the matrix
Q1,Q2 = map(int,input().split()) #quality range
for i in range(len(matritsa)):
element = matritsa[i]
if Q1 <= element and element <= Q2: #checking if an element is in range
koord.append([element, i//size, i%size, 1]) #coordinates of 1*1 elements
for razmer in range(2,size): #taking squares of 2+ size
#print("Razmer: ",razmer)
for a in range(len(matritsa)):
(x,y) = a//size,a%size #coordinates of the left top square
if y + razmer > size:
continue
ssum = 0
for b in range(x,x+razmer):
ssum += sum(matritsa[b*size+y:b*size+(y+razmer)])
if Q1 <= ssum and ssum <= Q2: #checking if it is in quality range
koord.append([ssum,x,y,razmer])
#print(koord)
#print("Coordinate: {0},{1}; ssum: {2}".format(x,y,ssum))
if x + razmer == size and y + razmer == size:
#print("Final: {0},{1}".format(x,y))
break
g = 0
temp = len(koord)
while g != temp:
(value1,x1,y1,a) = koord[g]
for i in range(g,temp - 1):
(value2,x2,y2,b) = koord[i+1]
if y1 >= y2 + b or y2 >= y1 + a:
diff[abs(value1 - value2)].append([value1,value2])
if x1 >= x2 + b or x2 >= x1 + a:
diff[abs(value1 - value2)].append([value1,value2])
g += 1
minimum = min(diff.keys())
if minimum == 0:
print(*max(diff[minimum]))
elif len(diff[minimum]) > 1:
maximum = sum(diff[minimum][0])
result = diff[minimum][0]
for pair in diff[minimum]:
if sum(pair) > maximum:
maximum = sum(pair)
result = pair
The problem is in this part
g = 0
temp = len(koord)
print(temp)
while g != temp:
(value1,x1,y1,a) = koord[g]
for i in range(g,temp - 1):
(value2,x2,y2,b) = koord[i+1]
if y1 >= y2 + b or y2 >= y1 + a:
diff[abs(value1 - value2)].append([value1,value2])
if x1 >= x2 + b or x2 >= x1 + a:
diff[abs(value1 - value2)].append([value1,value2])
g += 1

Better way to solve simultaneous linear equations programmatically in Python

I have the following code that solves simultaneous linear equations by starting with the first equation and finding y when x=0, then putting that y into the second equation and finding x, then putting that x back into the first equation etc...
Obviously, this has the potential to reach infinity, so if it reaches +-inf then it swaps the order of the equations so the spiral/ladder goes the other way.
This seems to work, tho I'm not such a good mathematician that I can prove it will always work beyond a hunch, and of course some lines never meet (I know how to use matrices and linear algebra to check straight off whether they will never meet, but I'm not so interested in that atm).
Is there a better way to 'spiral' in on the answer? I'm not interested in using math functions or numpy for the whole solution - I want to be able to code the solution. I don't mind using libraries to improve the performance, for instance using some sort of statistical method.
This may be a very naive question from either a coding or maths point of view, but if so I'd like to know why!
My code is as follows:
# A python program to solve 2d simultaneous equations
# by iterating over coefficients in spirals
import numpy as np
def Input(coeff_or_constant, var, lower, upper):
val = int(input("Let the {} {} be a number between {} and {}: ".format(coeff_or_constant, var, lower, upper)))
if val >= lower and val <= upper :
return val
else:
print("Invalid input")
exit(0)
def Equation(equation_array):
a = Input("coefficient", "a", 0, 10)
b = Input("coefficient", "b", 0, 10)
c = Input("constant", "c", 0, 10)
equation_list = [a, b, c]
equation_array.append(equation_list)
return equation_array
def Stringify_Equations(equation_array):
A = str(equation_array[0][0])
B = str(equation_array[0][1])
C = str(equation_array[0][2])
D = str(equation_array[1][0])
E = str(equation_array[1][1])
F = str(equation_array[1][2])
eq1 = str(A + "y = " + B + "x + " + C)
eq2 = str(D + "y = " + E + "x + " + F)
print(eq1)
print(eq2)
def Spiral(equation_array):
a = equation_array[0][0]
b = equation_array[0][1]
c = equation_array[0][2]
d = equation_array[1][0]
e = equation_array[1][1]
f = equation_array[1][2]
# start at y when x = 0
x = 0
infinity_flag = False
count = 0
coords = []
coords.append([0, 0])
coords.append([1, 1])
# solve equation 2 for x when y = START
while not (coords[0][0] == coords[1][0]):
try:
y = ( ( b * x ) + c ) / a
except:
y = 0
print(y)
try:
x = ( ( d * y ) - f ) / e
except:
x = 0
if x >= 100000 or x <= -100000:
count = count + 1
if count >= 100000:
print("It\'s looking like these linear equations don\'t intersect!")
break
print(x)
new_coords = [x, y]
coords.append(new_coords)
coords.pop(0)
if not ((x == float("inf") or x == float("-inf")) and (y == float("inf") or y == float("-inf"))):
pass
else:
infinity_flag if False else True
if infinity_flag == False:
# if the spiral is divergent this switches the equations around so it converges
# the infinity_flag is to check if both spirals returned infinity meaning the lines do not intersect
# I think this would mostly work for linear equations, but for other kinds of equations it might not
x = 0
a = equation_array[1][0]
b = equation_array[1][1]
c = equation_array[1][2]
d = equation_array[0][0]
e = equation_array[0][1]
f = equation_array[0][2]
infinity_flag = False
else:
print("These linear equations do not intersect")
break
y = round(y, 3)
x = round(x, 3)
print(x, y)
equation_array = []
print("Specify coefficients a and b, and a constant c for equation 1")
equations = Equation(equation_array)
print("Specify coefficients a and b, and a constant c for equation 1")
equations = Equation(equation_array)
print(equation_array)
Stringify_Equations(equation_array)
Spiral(equation_array)

Smoothing values (neighbors between 1-9)

Instructions: Compute and store R=1000 random values from 0-1 as x. moving_window_average(x, n_neighbors) is pre-loaded into memory from 3a. Compute the moving window average for x for the range of n_neighbors 1-9. Store x as well as each of these averages as consecutive lists in a list called Y.
My solution:
R = 1000
n_neighbors = 9
x = [random.uniform(0,1) for i in range(R)]
Y = [moving_window_average(x, n_neighbors) for n_neighbors in range(1,n_neighbors)]
where moving_window_average(x, n_neighbors) is a function as follows:
def moving_window_average(x, n_neighbors=1):
n = len(x)
width = n_neighbors*2 + 1
x = [x[0]]*n_neighbors + x + [x[-1]]*n_neighbors
# To complete the function,
# return a list of the mean of values from i to i+width for all values i from 0 to n-1.
mean_values=[]
for i in range(1,n+1):
mean_values.append((x[i-1] + x[i] + x[i+1])/width)
return (mean_values)
This gives me an error, Check your usage of Y again. Even though I've tested for a few values, I did not get yet why there is a problem with this exercise. Did I just misunderstand something?
The instruction tells you to compute moving averages for all neighbors ranging from 1 to 9. So the below code should work:
import random
random.seed(1)
R = 1000
x = []
for i in range(R):
num = random.uniform(0,1)
x.append(num)
Y = []
Y.append(x)
for i in range(1,10):
mov_avg = moving_window_average(x, n_neighbors=i)
Y.append(mov_avg)
Actually your moving_window_average(list, n_neighbors) function is not going to work with a n_neighbors bigger than one, I mean, the interpreter won't say a thing, but you're not delivering correctness on what you have been asked.
I suggest you to use something like:
def moving_window_average(x, n_neighbors=1):
n = len(x)
width = n_neighbors*2 + 1
x = [x[0]]*n_neighbors + x + [x[-1]]*n_neighbors
mean_values = []
for i in range(n):
temp = x[i: i+width]
sum_= 0
for elm in temp:
sum_+= elm
mean_values.append(sum_ / width)
return mean_values
My solution for +100XP
import random
random.seed(1)
R=1000
Y = list()
x = [random.uniform(0, 1) for num in range(R)]
for n_neighbors in range(10):
Y.append(moving_window_average(x, n_neighbors))

Resources