I am new to Haskell and I am struggling to get this concept to work.
I have to use a list of integers as a parameter and count the number of perfect squares (1,4,9,etc) in the list and output that value. So for example, if I entered myfunction[1,5,9] the output would be 2.
So far I have only got one function to work:
myfunction list = map per list
where per y = floor(sqrt (y) * sqrt (y))
Takes the square root of the element multiplied by the square root of the element. My mindset with the above is that I could set the above result equal to the original element. And if they are equal to each other, that would mean they are perfect squares. And then I would increment a value.
My issue is that my book doesn't give me any ideas for how to increment a variable or how to incorporate more than 1 function at a time. And as a result, I've been aimlessly working on this over the course of 3 days.
Thank you in advance for any help, advice, or resources!
fixing your version
first completed your version could look like this:
myfunction list = length $ filter per list
where
per y = floor(sqrt y * sqrt y) == y
this would even type-check but it would not work (try it)
that's because there is a small little problem - let's make it obvious by giving some types:
myfunction :: [Int] -> Int
myfunction list = length $ filter per list
where
per :: Int -> Bool
per y = floor(sqrt y * sqrt y) == y
you get an error:
No instance for (Floating Int) arising from a use of ‘sqrt’
it is trying to say to you that it does not know how to use sqrt for an Int - an easy fix is using fromIntegral and let it convert the Int into something that can:
myfunction :: [Int] -> Int
myfunction list = length $ filter per list
where
per :: Int -> Bool
per y = floor(sqrt (fromIntegral y) * sqrt (fromIntegral y)) == y
this kind of works (wrong answer) but gives an warning - we could get rid of with
myfunction :: [Int] -> Int
myfunction list = length $ filter per list
where
per :: Int -> Bool
per y = floor(sqrt (fromIntegral y :: Double) * sqrt (fromIntegral y)) == y
were we tell Haskell what type to use for the conversion (the warning would tell you that you default to this anyway).
So there is the wrong answer still.
#jpmarinier already told why - the way you test/sqr is sadly not cutting it (at least as I thought you wanted) - here is a fix:
myfunction :: [Int] -> Int
myfunction list = length $ filter per list
where
per :: Int -> Bool
per y = let y' = (fromIntegral y :: Double) in sqrt y' ** 2 == y'
where we first convert y to a Double value y' and test this.
Another option is using a integer-sqr as #jpmarinier mentioned:
myfunction :: [Int] -> Int
myfunction list = length $ filter per list
where
per :: Int -> Bool
per y = squareRoot y * squareRoot y == y
squareRoot :: Int -> Int
squareRoot = floor . sqrt . (fromIntegral :: Int -> Double)
that should finally work.
without floor and sqr:
ok this is maybe a bit to grok for you but here is how you can do this by sieving out the values.
Let's start by creating a (ascending) list of all perfect squares - I don't know which type you want those numbers to be so let's stay generic as well:
-- need later
import Data.List (sort)
perfectSquares :: Enum a => Num a => [a]
perfectSquares = [ n*n | n <- [1..] ]
no let's make a function counting elements from two lists - if the lists are sorted this can be done recursively by walking alongside the lists - I don't know if your input lists are always sorted so let's sort it before:
countOccurances :: (Enum a, Num a, Ord a) => [a] -> [a] -> a
countOccurances from list =
countAlong from $ sort list
where
countAlong [] _ = 0
countAlong _ [] = 0
countAlong allXs#(x:xs) allYs#(y:ys)
| x < y = countAlong xs allYs
| x > y = countAlong allXs ys
| otherwise = 1 + countAlong allXs ys
having both we can combine them for the answer:
import Data.List (sort)
countPerfectSquares :: (Enum a, Num a, Ord a) => [a] -> a
countPerfectSquares = countOccurances perfectSquares
countOccurances :: (Enum a, Num a, Ord a) => [a] -> [a] -> a
countOccurances from list =
countAlong from $ sort list
where
countAlong [] _ = 0
countAlong _ [] = 0
countAlong allXs#(x:xs) allYs#(y:ys)
| x < y = countAlong xs allYs
| x > y = countAlong allXs ys
| otherwise = 1 + countAlong allXs ys
perfectSquares :: Enum a => Num a => [a]
perfectSquares = [ n*n | n <- [1..] ]
Example:
> countPerfectSquares [1,5,9] :: Int
2
Related
--This line count how many 0 are in the list
hasZero :: [Int] -> Bool
hasZero x = 0 < sum [1 | y <- x, y == 0]
--In this line I want to count how many empty list are in the list, but I got compiling erorr.
hasEmpty :: [[a]] -> Bool
hasEmpty x = 0 < [1 | y <- [x], y == []]
There are 2 issues in your second method - you are missing sum which does the count in the first one, and you are wrapping passed list into another one, it should be y <- x as in the first one:
hasEmpty :: [[a]] -> Bool
hasEmpty x = 0 < sum [1 | y <- x, null y]
Which can be rewritten as:
hasEmpty :: [[a]] -> Bool
hasEmpty = any null
In the first example, you summed the elements of the list your list comprehension generated. In the second, you haven't done this. You also don't need to put x in brackets.
hasEmpty :: Eq a => [[a]] -> Bool
hasEmpty x = 0 < sum [1 | y <- x, y == []]
This is a peculiar way to accomplish this goal. The more idiomatic way (aside from using the existing Prelude function any) would be to use pattern matching and recursion.
hasZero :: [Int] -> Bool
hasZero [] = True
hasZero (0:_) = True
hasZero (_:xs) = hasZero xs
Using any:
hasZero :: [Int] -> Bool
hasZero = any (== 0)
I want to make a sudoku solver in Haskell (as an exercise). My idea is:
I have t :: [[Int]] representing a 9x9 grid so that it contains 0 in an empty field and 1-9 in a solved field.
A function solve :: [[Int]] -> [[Int]] returns the solved sudoku.
Here is a rough sketch of it (i'd like to point out i'm a beginner, i know it is not the most optimal code):
solve :: [[Int]] -> [[Int]]
solve t
| null (filter (elem 0) t) = t
| t /= beSmart t = solve (beSmart t)
| otherwise = guess t
The function beSmart :: [[Int]] -> [[Int]] tries to solve it by applying some solving algorithms, but if methodical approach fails (beSmart returns the unchanged sudoku table in that case) it should try to guess some numbers (and i'll think of that function later). In order to fill in an empty field, i have to find it first. And here's the problem:
beSmart :: [[Int]] -> [[Int]]
beSmart t = map f t
where f row
| elem 0 row = map unsolvedRow row
| otherwise = row
where unsolvedRow a
| a == 0 = tryToDo t r c --?!?!?!?! skip
| otherwise = a
The function tryToDo :: [[Int]]] -> Int -> Int - > Int needs the row and column of the field i'm trying to change, but i have no idea how to get that information. How do i get from map what element of the list i am in at the moment? Or is there a better way to move around in the table? I come from iterative and procedural programing and i understand that perhaps my approach to the problem is wrong when it comes to functional programing.
I know this is not really an answer to your question, but I would argue, that usually you would want a different representation (one that keeps a more detailed view of what you know about the sudoku puzzle, in your attempted solution you can only distinguish a solved cell from a cell that is free to assume any value). Sudoku is a classical instance of CSP. Where modern approaches offer many fairly general smart propagation rules, such as unit propagation (blocking a digit in neighboring cells once used somewhere), but also many other, see AC-3 for further details. Other related topics include SAT/SMT and you might find the algorithm DPLL also interesting. In the heart of most solvers there usually is some kind of a search engine to deal with non-determinism (not every instance must have a single solution that is directly derivable from the initial configuration of the instance by application of inference rules). There are also techniques such as CDCL to direct the search.
To address the question in the title, to know where you are, its probably best if you abstract the traversal of your table so that each step has access to the coordinates, you can for example zip a list of rows with [0..] (zip [0..] rows) to number the rows, when you then map a function over the zipped lists, you will have access to pairs (index, row), the same applies to columns. Just a sketch of the idea:
mapTable :: (Int -> Int -> a -> b) -> [[a]] -> [[b]]
mapTable f rows = map (\(r, rs) -> mapRow (f r) rs) $ zip [0..] rows
mapRow :: (Int -> a -> b) -> [a] -> [b]
mapRow f cols = map (uncurry f) $ zip [0..] cols
or use fold to turn your table into something else (for example to search for a unit cell):
foldrTable :: (Int -> Int -> a -> b -> b) -> b -> [[a]] -> b
foldrTable f z rows = foldr (\(r, rs) b -> foldrRow (f r) b rs) z $ zip [0..] rows
foldrRow :: (Int -> a -> b -> b) -> b -> [a] -> b
foldrRow f z cols = foldr (uncurry f) z $ zip [0..] cols
to find which cell is unital:
foldrTable
(\x y v acc -> if length v == 1 then Just (x, y) else acc)
Nothing
[[[1..9],[1..9],[1..9]],[[1..9],[1..9],[1..9]],[[1..9],[1],[1..9]]]
by using Monoid you can refactor it:
import Data.Monoid
foldrTable' :: Monoid b => (Int -> Int -> a -> b) -> [[a]] -> b
foldrTable' f rows = foldrTable (\r c a b -> b <> f r c a) mempty rows
unit :: Int -> Int -> [a] -> Maybe (Int, Int)
unit x y c | length c == 1 = Just (x, y)
| otherwise = Nothing
firstUnit :: [[[a]]] -> Maybe (Int, Int)
firstUnit = getFirst . foldrTable' (\r c v -> First $ unit r c v)
so now you would do
firstUnit [[[1..9],[1..9],[1..9]],[[1,2],[3,4],[5]]]
to obtain
Just (1, 2)
correctly determining that the first unit cell is at position 1,2 in the table.
[[Int]] is a good type for a sodoku. But map does not give any info regarding the place it is in. This is one of the ideas behind map.
You could zip together the index with the value. But a better idea would be to pass the whole [[Int]] and the indexes to to the function. So its type would become:
f :: [[Int]] -> Int -> Int -> [[Int]]
inside the function you can now access the current element by
t !! x !! y
Already did this a while ago as a learning example. It is definitely not the nicest solution, but it worked for me.
import Data.List
import Data.Maybe
import Data.Char
sodoku="\
\-9-----1-\
\8-4-2-3-7\
\-6-9-7-2-\
\--5-3-1--\
\-7-5-1-3-\
\--3-9-8--\
\-2-8-5-6-\
\1-7-6-4-9\
\-3-----8-"
sodoku2="\
\----13---\
\7-5------\
\1----547-\
\--418----\
\951-67843\
\-2---4--1\
\-6235-9-7\
\--7-98--4\
\89----1-5"
data Position = Position (Int, Int) deriving (Show)
data Sodoku = Sodoku [Int]
insertAtN :: Int -> a -> [a] -> [a]
insertAtN n y xs = intercalate [y] . groups n $ xs
where
groups n xs = takeWhile (not.null) . unfoldr (Just . splitAt n) $ xs
instance Show Sodoku where
show (Sodoku s) = (insertAtN 9 '\n' $ map intToDigit s) ++ "\n"
convertDigit :: Char -> Int
convertDigit x = case x of
'-' -> 0
x -> if digit>=1 && digit<=9 then
digit
else
0
where digit=digitToInt x
convertSodoku :: String -> Sodoku
convertSodoku x = Sodoku $ map convertDigit x
adjacentFields :: Position -> [Position]
adjacentFields (Position (x,y)) =
[Position (i,y) | i<-[0..8]] ++
[Position (x,j) | j<-[0..8]] ++
[Position (u+i,v+j) | i<-[0..2], j<-[0..2]]
where
u=3*(x `div` 3)
v=3*(y `div` 3)
positionToField :: Position -> Int
positionToField (Position (x,y)) = x+y*9
fieldToPosition :: Int -> Position
fieldToPosition x = Position (x `mod` 9, x `div` 9)
getDigit :: Sodoku -> Position -> Int
getDigit (Sodoku x) pos = x !! (positionToField pos )
getAdjacentDigits :: Sodoku -> Position -> [Int]
getAdjacentDigits s p = nub digitList
where
digitList=filter (\x->x/=0) $ map (getDigit s) (adjacentFields p)
getFreePositions :: Sodoku -> [Position]
getFreePositions (Sodoku x) = map fieldToPosition $ elemIndices 0 x
isSolved :: Sodoku -> Bool
isSolved s = (length $ getFreePositions s)==0
isDeadEnd :: Sodoku -> Bool
isDeadEnd s = any (\x->x==0) $ map length $ map (getValidDigits s)$ getFreePositions s
setDigit :: Sodoku -> Position -> Int -> Sodoku
setDigit (Sodoku x) pos digit = Sodoku $ h ++ [digit] ++ t
where
field=positionToField pos
h=fst $ splitAt field x
t=tail$ snd $ splitAt field x
getValidDigits :: Sodoku -> Position -> [Int]
getValidDigits s p = [1..9] \\ (getAdjacentDigits s p)
-- Select numbers with few possible choices first to increase execution time
sortImpl :: (Position, [Int]) -> (Position, [Int]) -> Ordering
sortImpl (_, i1) (_, i2)
| length(i1)<length(i2) = LT
| length(i1)>length(i2) = GT
| length(i1)==length(i2) = EQ
selectMoves :: Sodoku -> Maybe (Position, [Int])
selectMoves s
| length(posDigitList)>0 = Just (head posDigitList)
| otherwise = Nothing
where
posDigitList=sortBy sortImpl $ zip freePos validDigits
validDigits=map (getValidDigits s) freePos
freePos=getFreePositions s
createMoves :: Sodoku -> [Sodoku]
createMoves s=
case selectMoves s of
Nothing -> []
(Just (pos, digits)) -> [setDigit s pos d|d<-digits]
solveStep :: Sodoku -> [Sodoku]
solveStep s
| (isSolved s) = [s]
| (isDeadEnd s )==True = []
| otherwise = createMoves s
solve :: Sodoku -> [Sodoku]
solve s
| (isSolved s) = [s]
| (isDeadEnd s)==True = []
| otherwise=concat $ map solve (solveStep s)
s=convertSodoku sodoku2
readSodoku :: String -> Sodoku
readSodoku x = Sodoku []
I'm trying to do a function that given an operator and a function will go through a list like such:
reduce (*) even [1,2,3,4,5] => 8
reduce (+) odd [1,2,3,4,5] => 9
At first I had something like this:
reduce :: (Int-> Int-> Int) -> (Int->Bool) -> [Int] -> Int
reduce op x y = foldl op 1 (filter x y)
and it worked fine for multiplying, but added one number when trying to do a sum. So I thought of adding an if:
reduce :: (Int-> Int-> Int) -> (Int->Bool) -> [Int] -> Int
reduce op x y =
if op == (*) then foldl op 1 (filter x y)
else if op == (+) then foldl op 0 (filter x y)
else 0
However when I do this I get the following error:
Instance of Eq (Int -> Int -> Int) required for definition of reduce
What does it mean exactly? Any ideas? Thanks in advance
It means that with your current imports you cannot compare functions for equality (and even with suitable imports, there is no really good way to do the equality you ask for).
One simple solution is to demand that the user provide both the operation and the unit, thus:
reduce op u x y = foldl op u (filter x y)
In many cases of interest, there is already a Monoid instance that specifies the operator and unit. For example, there are the Sum and Product instances, so you might consider writing
reduce inject p = foldMap inject . filter p
which would be used like this:
> reduce Sum even [1..5]
Sum {getSum = 6}
> reduce Product odd [1..5]
Product {getProduct = 15}
What does it mean exactly? Any ideas? Thanks in advance
You're trying to compare some (Int -> Int -> Int) to another one. But functions cannot get checked on equality. Provide the initial value instead:
reduce :: (Int -> Int -> Int) -> (Int -> Bool) -> Int -> [Int] -> Int
reduce op f x xs = foldl op x (filter f xs)
By the way, you can generalize your function's type:
reduce :: (b -> a -> b) -> (a -> Bool) -> b -> [a] -> a
reduce op f x xs = foldl op x (filter f xs)
Alternatively, use a monoid and foldMap.
I have a function rep which requires a list with ints. My task now is to put each of these numbers in separate lists with n times the number. For example
[1,3,5] to [[1],[3,3,3],[5,5,5,5,5]] So far I can put each int in a separate list but I don't really now how to put them n times in the list without using replicate or repeat.
This is the code I have so far:
rep [] = []
rep (x1:xs) = [[x1]] ++ (rep xs)
As this is a homework/learning exercise - just want to give some hints
Split the task in two parts a function
myReplicate :: Int -> a -> [a] which replicates a single element as many times as the Int tells it to.
myReplicate n x | n > 0 = ...
| n == 0 = ...
| n < 0 = error "Error myReplicate: no negative arguments allowed"
a second function myMap :: (a -> b) -> [a] -> [b] that applies a function to every element of a given list.
myMap :: (a -> b) -> [a] -> [b]
myMap f [] = []
myMap f (x:xs) = ...
then rep = myMap (\x -> myReplicate x x)
Here a solution without repeat or replicate:
rep = map (\ n -> foldr (const (n :)) [] [1..n])
I have to find a height that's not taller than a given value. I have found code that does it for a list of integers. But I need it to accept a float value i.e. countElems :: Float -> Heights -> Int. I know I have to use fromIntegral to allow a Float value but I don't know how to implement it. This is what I have so far:
countElems :: Int -> [Int] -> Int
countElems n (x:xs) = fromEnum (n < x) + countElems n xs
countElems _ [] = 0
Just edit countElems type annotation to accept any ordered type:
countElems :: Ord a => a -> [a] -> Int
countElems n (x:xs) = fromEnum (n < x) + countElems n xs
countElems _ [] = 0
Now it works both for Int and Float and for every instance of Ord type class.
Actually, it's an actual type of countElems which compiler infers. Your version is restricted only for a = Float.
I got it to work using:
countElems :: Float -> [Float] -> Int
countElems _ [] = 0
countElems n (x:xs)
| n < x = 1 + (tallerthan n xs)
| otherwise = tallerthan n xs