Heat map for Irregularly Spaced Data with No Interpolation - python-3.x

I would like to plot a heatmap where the input data is not in the typical rectangularly spaced grid. Here is some sample data:
import numpy as np
xmin = 6
xmax= 12
ymin = 0
x = np.linspace(xmin, xmax, 100)
ymax = x**2
final = []
for i in range(len(ymax)):
yrange = np.linspace(0, ymax[i], 100)
for j in range(len(yrange)):
intensity = np.random.rand()
final.append([x[i], yrange[j], intensity])
data_for_plotting = np.asarray(final) # (10000, 3) shaped array
I would like to plot intensity (in the colorbar) as a function of (x,y) which represents the position and I would like to do this without interpolation.
Here is my solution which uses matplotlib's griddata and linear interpolation.
import matplotlib.pyplot as plt
from matplotlib.mlab import griddata
total_length = 100
x1 = np.linspace(min(data_for_plotting[:,0]), max(data_for_plotting[:,0]), total_length)
y1 = np.linspace(min(data_for_plotting[:,1]), max(data_for_plotting[:,1]), total_length)
z1 = griddata(data_for_plotting[:,0], data_for_plotting[:,1], data_for_plotting[:,2], x1, y1, interp='linear')
p=plt.pcolormesh(x1, y1, z1, vmin = 0. , vmax=1.0, cmap='viridis')
clb = plt.colorbar(p)
plt.show()
I am looking for an alternate solution without interpolation as I would like to see the smallest unit of measurement in my x and y position (pixel size/rectangle). Based on the sample data given above I expect the height of the pixel to increase for large values of x.

I'm unsure what matplotlib.mlab.griddata is about. Maybe some very old version?
You could use scipy.interpolate.griddata which needs its parameters in a slightly different format. method='nearest' switches off the interpolation (default method='linear').
Here is how it could look with your test data (see griddata's documentation for more explanation and examples):
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
import numpy as np
xmin = 6
xmax = 12
ymin = 0
x = np.linspace(xmin, xmax, 100)
ymax = x ** 2
final = []
for i in range(len(ymax)):
yrange = np.linspace(0, ymax[i], 100)
for j in range(len(yrange)):
intensity = np.random.rand()
final.append([x[i], yrange[j], intensity])
data_for_plotting = np.asarray(final) # (10000, 3) shaped array
total_length = 100
x1 = np.linspace(min(data_for_plotting[:, 0]), max(data_for_plotting[:, 0]), total_length)
y1 = np.linspace(min(data_for_plotting[:, 1]), max(data_for_plotting[:, 1]), total_length)
grid_x, grid_y = np.meshgrid(x1, y1)
z1 = griddata(data_for_plotting[:, :2], data_for_plotting[:, 2], (grid_x, grid_y), method='nearest')
img = plt.imshow(z1, extent=[x1[0], x1[-1], y1[0], y1[-1]], origin='lower',
vmin=0, vmax=1, cmap='inferno', aspect='auto')
cbar = plt.colorbar(img)
plt.show()
An alernative, is to create one rectangle for each of the prolonged pixels. Beware that this can be a rather slow operation. If really needed, one could create a pcolormesh for each column.
import matplotlib.pyplot as plt
from matplotlib.cm import ScalarMappable
import numpy as np
# ... create x and data_for_plotting as before
fig, ax = plt.subplots()
cmap = plt.get_cmap('inferno')
norm = plt.Normalize(0, 1)
x_step = x[1] - x[0]
y_step = 0
for i, (xi, yi, intensity_i) in enumerate(data_for_plotting):
if i + 1 < len(data_for_plotting) and data_for_plotting[i + 1, 0] == xi: # when False, the last y_step is reused
y_step = data_for_plotting[i + 1, 1] - yi
ax.add_artist(plt.Rectangle((xi, yi), x_step, y_step, color=cmap(norm(intensity_i))))
cbar = plt.colorbar(ScalarMappable(cmap=cmap, norm=norm))
ax.set_xlim(x[0], x[-1])
ax.set_ylim(0, data_for_plotting[:, 1].max())
plt.tight_layout()
plt.show()

Related

matplotlib draw a contour line on a colorbar plot

I used below code to generate the colorbar plot of an image:
plt.imshow(distance)
cb = plt.colorbar()
plt.savefig(generate_filename("test_images.png"))
cb.remove()
The image looks likes this:
I want to draw a single contour line on this image where the signed distance value is equal to 0. I checked the doc of pyplot.contour but it needs a X and Y vector that represents the coordinates and a Z that represents heights. Is there a method to generate X, Y, and Z? Or is there a better function to achieve this? Thanks!
If you leave out X and Y, by default, plt.contour uses the array indices (in this case the range 0-1023 in both x and y).
To only draw a contour line at a given level, you can use levels=[0]. The colors= parameter can fix one or more colors. Optionally, you can draw a line on the colorbar to indicate the value of the level.
import matplotlib.pyplot as plt
import numpy as np
from scipy import ndimage # to smooth a test image
# create a test image with similar properties as the given one
np.random.seed(20221230)
distance = np.pad(np.random.randn(1001, 1001), (11, 11), constant_values=-0.02)
distance = ndimage.filters.gaussian_filter(distance, 100)
distance -= distance.min()
distance = distance / distance.max() * 0.78 - 0.73
plt.imshow(distance)
cbar = plt.colorbar()
level = 0
color = 'red'
plt.contour(distance, levels=[level], colors=color)
cbar.ax.axhline(level, color=color) # show the level on the colorbar
plt.show()
Reference: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.contour.html
You can accomplish this by setting the [levels] parameter in contour([X, Y,] Z, [levels], **kwargs).
You can draw contour lines at the specified levels by giving an array that is in increasing order.
import matplotlib.pyplot as plt
import numpy as np
x = y = np.arange(-3.0, 3.0, 0.02)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X ** 2 - Y ** 2)
Z2 = np.exp(-(X - 1) ** 2 - (Y - 1) ** 2)
Z3 = np.exp(-(X + 1) ** 2 - (Y + 1) ** 2)
Z = (Z1 - Z2 - Z3) * 2
fig, ax = plt.subplots()
im = ax.imshow(Z, interpolation='gaussian',
origin='lower', extent=[-4, 4, -4, 4],
vmax=abs(Z).max(), vmin=-abs(Z).max())
plt.colorbar(im)
CS = ax.contour(X, Y, Z, levels=[0.9], colors='black')
ax.clabel(CS, fmt='%1.1f', fontsize=12)
plt.show()
Result (levels=[0.9]):

How to a reach solid surface in 3d surface in matplotlib?

How to reach a solid surface in 3d surface in matplotlib, please? I tried to apply plot_surface more times, but the refinement is limited and not enough. The transparency is still obvious. More sample also did not help.
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
# Coordinate for the cylinder
def data_for_cylinder_along_z(center_x,center_y,radius,height_z):
z = np.linspace(0, height_z, 200)
theta = np.linspace(0, 2*np.pi, 200)
theta_grid, z_grid=np.meshgrid(theta, z)
x_grid = radius*np.cos(theta_grid) + center_x
y_grid = radius*np.sin(theta_grid) + center_y
return x_grid,y_grid,z_grid
fig = plt.figure(figsize = (5,10))
ax = fig.add_subplot(111, projection='3d')
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
ax.set_zlim(0, 10)
ax.get_proj = lambda: np.dot(Axes3D.get_proj(ax), np.diag([0.4, 0.4, 1.6, 1])) # (x, y, z) ration of sides
theta1 = np.linspace(0, 2*np.pi, 100)
r1 = np.linspace(-2, 0, 100)
t1, R1 = np.meshgrid(theta1, r1)
X1 = R1*np.cos(t1)
Y1 = R1*np.sin(t1)
Z1 = 3+R1*1.5+4
ax.set_xlabel('x axis')
ax.set_ylabel('y axis')
ax.set_zlabel('z axis')
ax.plot_surface(X1, Y1, Z1, color="dimgray")
ax.plot_surface(X1, Y1, Z1, color="dimgray")
# Cylinder
Xc,Yc,Zc = data_for_cylinder_along_z(0,0,2,4)
rep=10
for i in range(rep):
ax.plot_surface(Xc, Yc, Zc, color = 'palegoldenrod')
plt.show()
you need to set antialiased to True (found by trial and error, couldn't find description in the docs):
# Cylinder
Xc,Yc,Zc = data_for_cylinder_along_z(0,0,2,4)
ax.plot_surface(Xc, Yc, Zc, color='palegoldenrod', antialiased=False)

How to color space between two lines with a colour transition?

How to colour space between two lines with a colour transition? For instance, with grey colour - the dark grey from the upper line should become lighter as proceeding to the lower line. Thank you
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()
plt.rcParams["figure.figsize"] = [8, 8]
x = np.linspace(0, 1, 100)
y = 0.3*x
ax.set_ylim(-0.2, 0.6)
ax.plot(x, y)
width_l = ax.get_ylim()[1] - ax.get_ylim()[0]
ax.plot(x, y - 0.1*width_l)
plt.show()
Edit
And this, please? How to make the width of the coloured part the same?
import matplotlib.pyplot as plt
import numpy as np
import pywt
fig, ax = plt.subplots()
plt.rcParams["figure.figsize"] = [8, 8]
wavelet = pywt.ContinuousWavelet('morl')
psi, x = wavelet.wavefun(level=2)
cmap = plt.get_cmap('Greys_r')
ax.plot(x, psi)
ax.set_xlim(ax.get_xlim()[0], ax.get_xlim()[1])
y_a = ax.get_ylim()
ax.set_ylim(y_a[0],y_a[1]*1.3)
width_l = ax.get_ylim()[1] - ax.get_ylim()[0]
x_range = ax.get_xlim()[1] - ax.get_xlim()[0]
x_shift = x_range * 0.1
ax.plot([x[0]+x_shift, x[1]+x_shift], [psi[0], psi[1]])
ax.plot([x[2]-x_shift, x[3]-x_shift], [psi[2], psi[3]])
ax.plot([x[1], x[2]], [psi[1]-width_l*0.1, psi[2]-width_l*0.1])
for t in np.linspace(0, 1, 40):
ax.plot(x, psi - t * 0.1 * width_l, color=cmap(t/2 + 0.25))
plt.show()
You could draw a lot of parallel lines (or curves) using a color from a gray-scale colormap. The example code below uses a transformation u = t/2 + 0.25, so when t goes from 0 to 1, u would just go between 0.25 and 0.75 to select of specific range from the colormap, avoiding the very dark and very light parts.
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()
plt.rcParams["figure.figsize"] = [8, 8]
x = np.linspace(0, 1, 100)
y = 0.3 * x
width_l = ax.get_ylim()[1] - ax.get_ylim()[0]
ax.set_ylim(-0.2, 0.6)
cmap = plt.get_cmap('Greys_r')
for t in np.linspace(0, 1, 40):
u = t/2 + 0.25
ax.plot(x, y - t * 0.1 * width_l, color=cmap(u))
ax.plot(x, y)
ax.plot(x, y - 0.1 * width_l)
plt.show()

Buggy vectors in quiver plot (Gradient of of Voltage) with matplotlib

I edited some examples to make a simulation for the voltage superposition of 2 point charges and made a 3D surface plot, the code is the following:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
q1 = 2e-9
q2 = -2e-9
K = 9e9
#Charge1 position
x1 = 2.0
y1 = 4.0
#Charge2 position
x2 = 6.0
y2 = 4.0
x = np.linspace(0,8,50)
y = np.linspace(0,8,50)
x, y = np.meshgrid(x,y)
r1 = np.sqrt((x - x1)**2 + (y - y1)**2)
r2 = np.sqrt((x - x2)**2 + (y - y2)**2)
V = K*(q1/r1 + q2/r2)
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(x, y, V, rstride=1, cstride=1, cmap=cm.rainbow,
linewidth=0, antialiased=False)
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
3D Surface
Now what I want to do is a contour plot with a vector (quiver) plot on top of it. I tried the following code, but I get a bunch of buggy vectors coming out of both charges, even the negative one:
fig2, ax2 = plt.subplots(1,1)
cp = ax2.contourf(x, y, V, cmap=cm.coolwarm)
fig2.colorbar(cp)
v,u = np.gradient(-V, 0.2, 0.2) #E = -∇V
ax2.quiver(x, y, u, v)
ax2.set_title("Point Charges")
plt.show()
Buggy vectors
I suspect that the long vectors are related to a division by zero. The vectors should come out of the positive charge and get into the negative one. But how would I go about fixing them? Thanks in advance.
Welcome to SO, very nice MWE. One option would be to exclude all vectors beyond a certain length by setting them to NaN. Here I use the 95th percentile.
r = np.sqrt(u**2 + v**2)
is_valid = r < np.percentile(r, 95)
u[~is_valid] = np.nan
v[~is_valid] = np.nan
x[~is_valid] = np.nan
y[~is_valid] = np.nan
fig2, ax2 = plt.subplots(1,1)
cp = ax2.contourf(x, y, V, cmap=cm.coolwarm)
fig2.colorbar(cp)
ax2.quiver(x, y, u, v)
ax2.set_title("Point Charges")
ax2.set_xlim(0, 8)
ax2.set_ylim(0, 8)
plt.show()

Draw curves with triple colors and width by using matplotlib and LineCollection [duplicate]

The figure above is a great artwork showing the wind speed, wind direction and temperature simultaneously. detailedly:
The X axes represent the date
The Y axes shows the wind direction(Southern, western, etc)
The variant widths of the line were stand for the wind speed through timeseries
The variant colors of the line were stand for the atmospheric temperature
This simple figure visualized 3 different attribute without redundancy.
So, I really want to reproduce similar plot in matplotlib.
My attempt now
## Reference 1 http://stackoverflow.com/questions/19390895/matplotlib-plot-with-variable-line-width
## Reference 2 http://stackoverflow.com/questions/17240694/python-how-to-plot-one-line-in-different-colors
def plot_colourline(x,y,c):
c = plt.cm.jet((c-np.min(c))/(np.max(c)-np.min(c)))
lwidths=1+x[:-1]
ax = plt.gca()
for i in np.arange(len(x)-1):
ax.plot([x[i],x[i+1]], [y[i],y[i+1]], c=c[i],linewidth = lwidths[i])# = lwidths[i])
return
x=np.linspace(0,4*math.pi,100)
y=np.cos(x)
lwidths=1+x[:-1]
fig = plt.figure(1, figsize=(5,5))
ax = fig.add_subplot(111)
plot_colourline(x,y,prop)
ax.set_xlim(0,4*math.pi)
ax.set_ylim(-1.1,1.1)
Does someone has a more interested way to achieve this? Any advice would be appreciate!
Using as inspiration another question.
One option would be to use fill_between. But perhaps not in the way it was intended. Instead of using it to create your line, use it to mask everything that is not the line. Under it you can have a pcolormesh or contourf (for example) to map color any way you want.
Look, for instance, at this example:
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import interp1d
def windline(x,y,deviation,color):
y1 = y-deviation/2
y2 = y+deviation/2
tol = (y2.max()-y1.min())*0.05
X, Y = np.meshgrid(np.linspace(x.min(), x.max(), 100), np.linspace(y1.min()-tol, y2.max()+tol, 100))
Z = X.copy()
for i in range(Z.shape[0]):
Z[i,:] = c
#plt.pcolormesh(X, Y, Z)
plt.contourf(X, Y, Z, cmap='seismic')
plt.fill_between(x, y2, y2=np.ones(x.shape)*(y2.max()+tol), color='w')
plt.fill_between(x, np.ones(x.shape) * (y1.min() - tol), y2=y1, color='w')
plt.xlim(x.min(), x.max())
plt.ylim(y1.min()-tol, y2.max()+tol)
plt.show()
x = np.arange(100)
yo = np.random.randint(20, 60, 21)
y = interp1d(np.arange(0, 101, 5), yo, kind='cubic')(x)
dv = np.random.randint(2, 10, 21)
d = interp1d(np.arange(0, 101, 5), dv, kind='cubic')(x)
co = np.random.randint(20, 60, 21)
c = interp1d(np.arange(0, 101, 5), co, kind='cubic')(x)
windline(x, y, d, c)
, which results in this:
The function windline accepts as arguments numpy arrays with x, y , a deviation (like a thickness value per x value), and color array for color mapping. I think it can be greatly improved by messing around with other details but the principle, although not perfect, should be solid.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
x = np.linspace(0,4*np.pi,10000) # x data
y = np.cos(x) # y data
r = np.piecewise(x, [x < 2*np.pi, x >= 2*np.pi], [lambda x: 1-x/(2*np.pi), 0]) # red
g = np.piecewise(x, [x < 2*np.pi, x >= 2*np.pi], [lambda x: x/(2*np.pi), lambda x: -x/(2*np.pi)+2]) # green
b = np.piecewise(x, [x < 2*np.pi, x >= 2*np.pi], [0, lambda x: x/(2*np.pi)-1]) # blue
a = np.ones(10000) # alpha
w = x # width
fig, ax = plt.subplots(2)
ax[0].plot(x, r, color='r')
ax[0].plot(x, g, color='g')
ax[0].plot(x, b, color='b')
# mysterious parts
points = np.array([x, y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
# mysterious parts
rgba = list(zip(r,g,b,a))
lc = LineCollection(segments, linewidths=w, colors=rgba)
ax[1].add_collection(lc)
ax[1].set_xlim(0,4*np.pi)
ax[1].set_ylim(-1.1,1.1)
fig.show()
I notice this is what I suffered.

Resources