In my Android application I have code that should run periodically in its own coroutine and should be cancelable.
for this I have the following functions:
startJob(): Initializes the job, sets up invokeOnCompletion() and starts the work loop in the respective scope
private fun startJob() {
if (::myJob.isInitialized && myJob.isActive) {
return
}
myJob= Job()
myJob.invokeOnCompletion {
it?.message.let {
var msg = it
if (msg.isNullOrBlank()) {
msg = "Job stopped. Reason unknown"
}
myJobCompleted(msg)
}
}
CoroutineScope(Dispatchers.IO + myJob).launch {
workloop()
}
}
workloop(): The main work loop. Do some work in a loop with a set delay in each iteration:
private suspend fun workloop() {
while (true) {
// doing some stuff here
delay(setDelayInMilliseconds)
}
}
myJobCompleted: do some finalizing. For now simply log a message for testing.
private fun myJobCompleted(msg: String) {
try {
mainActivityReference.logToGUI(msg)
}
catch (e:Exception){
println("debug: " + e.message)
}
}
Running this and calling myJob.Cancel() will throw the following exception in myJobCompleted():
debug: Only the original thread that created a view hierarchy can touch its views.
I'm curious as to why this code isn't running on the main thread, since startJob() IS called from the main thread?
Furthermore: is there a option similar to using a CancellationTokenSource in c#, where the job is not immediately cancelled, but a cancellation request can be checked each iteration of the while loop?
Immediately breaking off the job, regardless of what it is doing (although it will pretty much always be waiting for the delay on cancellation) doesn't seem like a good idea to me.
It is not the contract of Job.invokeOnCompletion to run on the same thread where Job is created. Moreover, such a contract would be impossible to implement.
You can't expect an arbitrary piece of code to run on an arbitrary thread, just because there was some earlier method invocation on that thread. The ability of the Android main GUI thread to execute code submitted from the outside is special, and involves the existence a top-level event loop.
In the world of coroutines, what controls thread assignment is the coroutine context, while clearly you are outside of any context when creating the job. So the way to fix it is to explicitly launch(Dispatchers.Main) a coroutine from within invokeOnCompletion.
About you question on cancellation, you can use withContext(NonCancellable) to surround the part of code you want to protect from cancellation.
Related
In the docs it says that coroutines are lighter than threads and so I wanted to use a kotlin coroutine instead of the BukkitRunnable.
//Defined as class field
private val scope = coroutineScope(Dispatchers.Default)
//In class method
scope.launch {/* wait some seconds and then change blockdata */}
Calling setBlockData from Dispatchers.Default thread throws an error because the spigot API is not thread safe and you can't call API stuff from a thread other than the main.
java.lang.IllegalStateException: Asynchronous block remove!
I was thinking that changing block data is the equivalent of android UI changes in Minecraft which means that the coroutine needs to be run/injected into the main thread. So it would make sense to run my coroutine in Dispatchers.Main. However, I can't find a way use Dispatchers.Main and set it to the main thread without getting an illegalStateException
I hope my logic is correct here
If you want a simple method that is able to bridge the suspending code with the main thread (with the possibility of fetching some information from the main thread and use that on your coroutine), you can use this method:
suspend fun <T> suspendSync(plugin: Plugin, task: () -> T): T = withTimeout(10000L) {
// Context: The current coroutine context
suspendCancellableCoroutine { cont ->
// Context: The current coroutine context
Bukkit.getScheduler().runTask(plugin) {
// Context: Bukkit MAIN thread
// runCatching is used to forward any exception that may occur here back to
// our coroutine, keeping the exception transparency of Kotlin coroutines
runCatching(task).fold({ cont.resume(it) }, cont::resumeWithException)
}
}
}
I've commented on what context each part of the code is executed so you can visualize the context switch. suspendCancellableCoroutine is a way of getting hold of the continuation object all coroutines use under the hood, so we can manually resume it once the main thread execute our task.
The outer block withTimeout is used so that if the main thread does not complete our task within 10 seconds, our coroutine gives up instead of hanging forever.
And the use is very simple too:
val plugin = // comes from somewhere
// example coroutine scope
CoroutineScope(Dispatchers.Default).launch {
// doing stuff async
// oh no, I need some data from the main thread!
val block = suspendSync(plugin) {
// this code runs on the MAIN thread
Bukkit.getWorld("blah").getBlockAt(0, 0, 0)
}
// back to async here, do stuff with block (just don't MODIFY it async, use more suspendSync if needed)
}
If you have any questions or think I can improve this answer, don't be afraid of letting me know.
I was trying to update the recycler view content from a background thread in Kotlin. I am not using AsyncTask.
Here is my code, i want to know if there is any better way than this:
In my MainActivity, i have progressThread as a member variable.
var progressThread = Thread()
Then in my method where i want to run the thread first i am defining it...like
progressThread = Thread (
Runnable {
kotlin.run {
try {
while (i <= 100 && !progressThread.isInterrupted) {
Thread.sleep(200)
//Some Logic
runOnUiThread {
//this runs in ui thread
}
i++
}
}catch (e:InterruptedException){
progressThread.interrupt()
}
}
})
after that i am starting it in the same method as
progressThread.start()
and for stopping it, i have a listener to cancel the progress and in the callback of that listener, i have written:
progressThread.interrupt()
Updated
Coroutines are stable now,: https://kotlinlang.org/docs/reference/coroutines-overview.html
Old Answer
Yes, you can do this using doAsync from kotlin anko library that is fairly simple and easy to use.
add following line in module level gradle file:
compile "org.jetbrains.anko:anko-commons:0.10.0"
Code example:
val future = doAsync {
// do your background thread task
result = someTask()
uiThread {
// use result here if you want to update ui
updateUI(result)
}
}
code block written in uiThread will only be executed if your Activity or Fragment is in foreground mode (It is lifecycle aware). So if you are trying to stop thread because you don't want your ui code to execute when Activity is in background, then this is an ideal case for you.
As you can check doAsync returns a Future object so you can cancel the background task, by cancel() function:
future.cancel(true)
pass true if you want to stop the thread even when it has started executing.
If you have more specialised case to handle stopping case then you can do the same thing as in your example.
You can use Kotlin Coroutines also but its in Experimental phase, still you can try it out: https://kotlinlang.org/docs/reference/coroutines.html
I have an issue with cross threading on a UI. I have read all the ways to do it and have implemented them as seen below.
public void UpdateList(object obj)
{
// do we need to switch threads?
if (listBox1.InvokeRequired)
{
MethodInvoker del = () => UpdateList(obj);
this.Invoke(del);
return;
}
// ok so now we're here, this means we're able to update the control
// so we unbox the object into a string
string text = (string)obj;
// and update
listBox1.Items.Add(text);
}
The issue comes when I try to do a
hubConnection.Start().Wait();
After that call I am trying to update my list.
Without the wait is fine. When I add the Wait it hangs on the UpdateList Invoke. There is no error...it just hangs.
I am handling this call in a button event.
Wait() is creating a deadlock on the mainthread.
Replace the hubconnection.Start.Wait() with:
await hubconnection.Start() in an async method:
public void async StartHubClickedEvent(...){
await hubconnection.Start()
}
The Microsoft Async library enables use of async/awaut on .net 4.0 and VS12.
Install-Package Microsoft.Bcl.Async
See Deadlock when thread uses dispatcher and the main thread is waiting for thread to finish
You've generated a recursive loop. Assuming an Invoke is Required, you'll call up the same method, hit if (listBox1.InvokeRequired) again (which will still pass true) and start looping as you keep calling up the same method again and again. It's better to do an If..Else pattern here where you directly invoke the change on the ListBox or simply perform the change without the invoke
An Example
if (listBox1.InvokeRequired)
{
listBox1.Invoke(()=> { listBox1.Items.Add((string)text) };
}
else
{
string text = (string)obj;
// and update
listBox1.Items.Add(text);
}
Consider this code :
Thread thread = new Thread(() -> tasks.parallelStream().forEach(Runnable::run));
tasks are a list of Runnables that should be executed in parallel.
When we start this thread, and it begins its execution, then depending on some calculations we need to interrupt (cancel) all those tasks.
Interrupting the Thread will only stop one of exections. How do we handle others? or maybe Streams should not be used that way? or you know a better solution?
You can use a ForkJoinPool to interrupt the threads:
#Test
public void testInterruptParallelStream() throws Exception {
final AtomicReference<InterruptedException> exc = new AtomicReference<>();
final ForkJoinPool forkJoinPool = new ForkJoinPool(4);
// use the pool with a parallel stream to execute some tasks
forkJoinPool.submit(() -> {
Stream.generate(Object::new).parallel().forEach(obj -> {
synchronized (obj) {
try {
// task that is blocking
obj.wait();
} catch (final InterruptedException e) {
exc.set(e);
}
}
});
});
// wait until the stream got started
Threads.sleep(500);
// now we want to interrupt the task execution
forkJoinPool.shutdownNow();
// wait for the interrupt to occur
Threads.sleep(500);
// check that we really got an interruption in the parallel stream threads
assertTrue(exc.get() instanceof InterruptedException);
}
The worker threads do really get interrupted, terminating a blocking operation. You can also call shutdown() within the Consumer.
Note that those sleeps might not be tweaked for a proper unit test, you might have better ideas to just wait as necessary. But it is enough to show that it is working.
You aren't actually running the Runnables on the Thread you are creating. You are running a thread which will submit to a pool, so:
Thread thread = new Thread(() -> tasks.parallelStream().forEach(Runnable::run));
In this example you are in lesser terms doing
List<Runnable> tasks = ...;
Thread thread = new Thread(new Runnable(){
public void run(){
for(Runnable r : tasks){
ForkJoinPool.commonPool().submit(r);
}
}
});
This is because you are using a parallelStream that delegates to a common pool when handling parallel executions.
As far as I know, you cannot get a handle of the Threads that are executing your tasks with a parallelStream so may be out of luck. You can always do tricky stuff to get the thread but probably isn't the best idea to do so.
Something like the following should work for you:
AtomicBoolean shouldCancel = new AtomicBoolean();
...
tasks.parallelStream().allMatch(task->{
task.run();
return !shouldCancel.get();
});
The documentation for the method allMatch specifically says that it "may not evaluate the predicate on all elements if not necessary for determining the result." So if the predicate doesn't match when you want to cancel, then it doesn't need to evaluate any more. Additionally, you can check the return result to see if the loop was cancelled or not.
I'm writing a small programm where JavaFx acts as a viewer and controler and let Java do the other hard work. I can start multiple threads from Javafx however, I'm not able to stop them. If I try to use .stop(), the threads are still running.
Here is one of them:
public var sleepTask_connect;
function LogOutAction(): Void {
sleepTask_connect.stop();
}
function LogInAction(): Void {
var listener = FXListener_interface_connection {
override function callback(errorCode, errorMessage): Void {
//do something
if(errorCode != 200){
setIcn(errorMessage);
}
}
}
sleepTask_connect = FXListener_connection {
listener: listener
};
sleepTask_connect.start();
}
Use JavaTaskBase to implement you Java thread. There is a stop method to kill the thread. Here is an example of how you use it.
I've had better luck with the JFXtras XWorker component for threading. See http://jfxtras.googlecode.com/svn/site/javadoc/release-0.6/org.jfxtras.async/org.jfxtras.async.XWorker.html.
However in general in order for your thread to respond to cancel/stop requests, you have to check the canceled or stopped flag in your code during your "do something" section. This works if your thread is in an infinite loop for example, or if you just have a series of long running processes you can check for canceled/stopped in between them. Alternatively, if your code calls some blocking method (like sockets or a blocking queue), then most of these will throw an InterruptedException when the thread is canceled.