Articulate non-blocking to blocking events in pyglet - python-3.x

I'm developing a game in pyglet, that scheduled by a simple text file like :
0:00:01;event1
0:00:02;event2
0:00:03;event3
The fact is that, among these events, some might be blocking (for instance event2 might consist in displaying instructions until a key is pressed). As a consequence, event3 might not be executed at the proper time (i.e., during the event2). For now, my strategy is to schedule one event after the other :
Execute the first event
Once the first event is finished, compute the remaining duration between the first and the second event (delta_duration)
Schedule the second event with a delay of delta_duration
... and so on
For now, I did not succeed in implementing properly a blocking event with this strategy. It seems that anything blocking the event_loop (like a sleep call during event2) is preventing even the graphical elements of event2 (text instructions) to be displayed. On the other hand, if I do not put any blocking routine (sleep) in the event2, I'm able to see the vertices, but the scheduler keeps on scheduling (!), and so the event3 comes too soon.
My question is : what would be a general strategy, in pyglet, to articulate non-blocking to blocking events ? More precisely, is it possible (desirable) to use multiple clocks for that purpose ? The pyglet documentation mentions that multiple clocks can be used but it is not very well explained.
I don't want a solution that is specific to my events example but, rather, general indications about the way to go.

It's really up to your program on what blocks. If you are using input from Python for the console window, then yes that will block because it's blocking execution of Python in general. If you have a label popup in the window that is waiting for input from an on_key_press window event, then that is completely different as it's not blocking the pyglet loop, it was scheduled within it.
If your event is a 20 second long math calculation, then that should probably be ran in a thread. You will probably have to separate the types of events in order to differentiate how they should be ran. It's hard to say because without a runnable example or sample of code, I am just guessing at your intentions.
Although it sounds more like you are wanting some sort of callback system. When execution of func1 is declared done, go to func2. There is nothing built into pyglet like this, you would have to have a clever use of scheduling. There are examples of this using pure python though. I personally use Twisted Deferred's for this.

Related

Workaround for ncurses multi-thread read and write

This is what says on http://invisible-island.net/ncurses/ncurses.faq.html#multithread
If you have a program which uses curses in more than one thread, you will almost certainly see odd behavior. That is because curses relies upon static variables for both input and output. Using one thread for input and other(s) for output cannot solve the problem, nor can extra screen updates help. This FAQ is not a tutorial on threaded programming.
Specifically, it mentions it is not safe even if input and output are done on separate threads. Would it be safe if we further use a mutex for the whole ncurses library so that at most one thread can be calling any ncurses function at a time? If not, what would be other cheap workarounds to use ncurses safely in multi-thread application?
I'm asking this question because I notice a real application often has its own event loop but relies on ncurses getch function to get keyboard input. But if the main thread is block waiting in its own event loop, then it has no chance to call getch. A seemingly applicable solution is to call getch in a different thread, which hasn't caused me a problem yet, but as what says above is actually not safe, and was verified by another user here. So I'm wondering what is the best way to merge getch into an application's own event loop.
I'm considering making getch non-blocking and waking up the main thread regularly (every 10-100 ms) to check if there is something to read. But this adds an additional delay between key events and makes the application less responsive. Also, I'm not sure if that would cause any problems with some ncurses internal delay such as ESCDELAY.
Another solution I'm considering is to poll stdin directly. But I guess ncurses should also be doing something like that and reading the same stream from two different places looks bad.
The text also mentions the "ncursest" or "ncursestw" libraries, but they seem to be less available, for example, if you are using a different language binding of curses. It would be great if there is a viable solution with the standard ncurses library.
Without the thread-support, you're out of luck for using curses functions in more than one thread. That's because most of the curses calls use static or global data. The getch function for instance calls refresh which can update the whole screen—using the global pointers curscr and stdscr. The difference in the thread-support configuration is that global values are converted to functions and mutex's added.
If you want to read stdin from a different thread and run curses in one thread, you probably can make that work by checking the file descriptor (i.e., 0) for pending activity and alerting the thread which runs curses to tell it to read data.

How to "join threads" with Lego Mindstorms NXT default "LabVIEW" code

Simply put, I want to manipulate two motors in parallel, then when both are ready, continue with a 3rd thread.
Below is image of what I have now. In two top threads, it sets motors B and C to "unlimited", then waits until both trigger the switches, then sets a separate boolean variable for both.
Then in 3rd thread, I poll these two variables with 1 second interval, until AND operation gives true to the loop termination condition.
This is embedded system and all, so it may be ok here, but in "PC programming", this kind of polling loop would be rather horrible thing to do.
Question: Can I do either of both of
wait for variable without this kind of polling loop?
wait for a thread to finish without using a variable at all?
Your question is a bit vague on what you actually want to achieve and using which language. As I understood you want to be able to implement a similar multithreaded motor control mechanism in Labview?
If so, then the answer to both of your questions is yes, you can implement the wait without an explicitly defined variable (other than the error cluster, which you probably would be passing around anyway). The easiest method is to pass an error cluster to both your loops and then use Merge errors to combine the generated errors once the loops are finished. Merge errors will wait until both inputs have data, merges the errors, and passes the merged error cluster on. By wiring the merged error cluster to your teardown function you effectively achieve the thread synchronization you described. If you require thread synchronization for the two control loops, you would however still have to use semaphores, rendezvous', notifiers, and other built-in synch methods.
In the image there's an init function that opens two serial devices (purple wire) and passes them to the control loops, which both runs until an error (yellow-black wire) occurs. The errors from both are merged and passed to the teardown function that releases the serial devices. Notice that in this particular example the synchronization would occur at the end of program as long as there's at least one wire coming from each loop to the teardown function.
Similar functionality in a text based programming language would necessitate the use of more elaborate mechanisms, though some specialised language for parallel programming might help here.

Having MATLAB to run multiple independent functions which contains infinite while loop

I am currently working with three matlab functions to make them run near simultaneously in single Matlab session(as I known matlab is single-threaded), these three functions are allocated with individual tasks, it might be difficult for me to explain all the detail of each function here, but try to include as much information as possible.
They are CONTROL/CAMERA/DATA_DISPLAY tasks, The approach I am using is creating Timer objects to have all the function callback continuously with different callback period time.
CONTROL will sending and receiving data through wifi with udp port, it will check the availability of package, and execute callback constantly
CAMERA receiving camera frame continuously through tcp and display it, one timer object T1 for this function to refresh the capture frame
DATA_DISPLAY display all the received data, this will refresh continuously, so another timer T2 for this function to refresh the display
However I noticed that the timer T2 is blocking the timer T1 when it is executed, and slowing down the whole process. I am working on a system using a multi-core CPU and I would expect MATLAB to be able to execute both timer objects in parallel taking advantage of the computational cores.
Through searching the parallel computing toolbox in matlab, it seems not able to deal with infinite loop or continuous callback, since the code will not finish and display nothing when execute, probably I am not so sure how to utilize this toolbox
Or can anyone provide any good idea of re-structuring the code into more efficient structure.
Many thanks
I see a problem using the parallel computing toolbox here. The design implies that the jobs are controlled via your primary matlab instance. Besides this, the primary instance is the only one with a gui, which would require to let your DISPLAY_DATA-Task control everything. I don't know if this is possible, but it would result in a very strange architecture. Besides this, inter process communication is not the best idea when processing large data amounts.
To solve the issue, I would use Java to display your data and realise the 'DISPLAY_DATA'-Part. The connection to java is very fast and simple to use. You will have to write a small java gui which has a appendframe-function that allows your CAMERA-Job to push new data. Obviously updating the gui should be done parallel without blocking.

Independent server side processing in node

Is it possible, or even practical to create a node program (or sub program/loop) that executes independently of the connected clients.
So in my specific use case, I would like to make a mulitplayer game, where each turn a player preforms actions. And at the end of that turn those actions are computed. Is it possible to perform those computations at a specific time regardless of the client/players connecting?
I assume this involves the use of threads somewhere.
Possibly an easier solution would be to compute the outcome when it is observed, but this could cause difficulties if it has an influence in with other entities. But this problem has been a curiosity of mine for a while.
Well, basically, the easiest solution would probably to run the computation onto a cluster. This is spawning a thread who's running independent task and communicating with messages with the main thread.
If you wish however to run a completely separate process (I probably wouldn't, but it is an option), this can happen too. You then just need a communication protocol between the two process. Usually this would be handled by a messaging or a task queue system. A popular queue solving this issue is RabbitMQ.
If the computations each turn is not to heavy you could solve the issue with a simple setTimeout()
function turnCalculations(){
//do loads of stuff every 30 seconds
}
setTimout(turnCalculations,30000)
//normal node server stuff here
This would do the turn calculations every 30 seconds regardless of users connected, but if the calculations take to long they might block your server.

What are the benefits of coroutines?

I've been learning some lua for game development. I heard about coroutines in other languages but really came up on them in lua. I just don't really understand how useful they are, I heard a lot of talk how it can be a way to do multi-threaded things but aren't they run in order? So what benefit would there be from normal functions that also run in order? I'm just not getting how different they are from functions except that they can pause and let another run for a second. Seems like the use case scenarios wouldn't be that huge to me.
Anyone care to shed some light as to why someone would benefit from them?
Especially insight from a game programming perspective would be nice^^
OK, think in terms of game development.
Let's say you're doing a cutscene or perhaps a tutorial. Either way, what you have are an ordered sequence of commands sent to some number of entities. An entity moves to a location, talks to a guy, then walks elsewhere. And so forth. Some commands cannot start until others have finished.
Now look back at how your game works. Every frame, it must process AI, collision tests, animation, rendering, and sound, among possibly other things. You can only think every frame. So how do you put this kind of code in, where you have to wait for some action to complete before doing the next one?
If you built a system in C++, what you would have is something that ran before the AI. It would have a sequence of commands to process. Some of those commands would be instantaneous, like "tell entity X to go here" or "spawn entity Y here." Others would have to wait, such as "tell entity Z to go here and don't process anymore commands until it has gone here." The command processor would have to be called every frame, and it would have to understand complex conditions like "entity is at location" and so forth.
In Lua, it would look like this:
local entityX = game:GetEntity("entityX");
entityX:GoToLocation(locX);
local entityY = game:SpawnEntity("entityY", locY);
local entityZ = game:GetEntity("entityZ");
entityZ:GoToLocation(locZ);
do
coroutine.yield();
until (entityZ:isAtLocation(locZ));
return;
On the C++ size, you would resume this script once per frame until it is done. Once it returns, you know that the cutscene is over, so you can return control to the user.
Look at how simple that Lua logic is. It does exactly what it says it does. It's clear, obvious, and therefore very difficult to get wrong.
The power of coroutines is in being able to partially accomplish some task, wait for a condition to become true, then move on to the next task.
Coroutines in a game:
Easy to use, Easy to screw up when used in many places.
Just be careful and not use it in many places.
Don't make your Entire AI code dependent on Coroutines.
Coroutines are good for making a quick fix when a state is introduced which did not exist before.
This is exactly what java does. Sleep() and Wait()
Both functions are the best ways to make it impossible to debug your game.
If I were you I would completely avoid any code which has to use a Wait() function like a Coroutine does.
OpenGL API is something you should take note of. It never uses a wait() function but instead uses a clean state machine which knows exactly what state what object is at.
If you use coroutines you end with up so many stateless pieces of code that it most surely will be overwhelming to debug.
Coroutines are good when you are making an application like Text Editor ..bank application .. server ..database etc (not a game).
Bad when you are making a game where anything can happen at any point of time, you need to have states.
So, in my view coroutines are a bad way of programming and a excuse to write small stateless code.
But that's just me.
It's more like a religion. Some people believe in coroutines, some don't. The usecase, the implementation and the environment all together will result into a benefit or not.
Don't trust benchmarks which try to proof that coroutines on a multicore cpu are faster than a loop in a single thread: it would be a shame if it were slower!
If this runs later on some hardware where all cores are always under load, it will turn out to be slower - ups...
So there is no benefit per se.
Sometimes it's convenient to use. But if you end up with tons of coroutines yielding and states that went out of scope you'll curse coroutines. But at least it isn't the coroutines framework, it's still you.
We use them on a project I am working on. The main benefit for us is that sometimes with asynchronous code, there are points where it is important that certain parts are run in order because of some dependencies. If you use coroutines, you can force one process to wait for another process to complete. They aren't the only way to do this, but they can be a lot simpler than some other methods.
I'm just not getting how different they are from functions except that
they can pause and let another run for a second.
That's a pretty important property. I worked on a game engine which used them for timing. For example, we had an engine that ran at 10 ticks a second, and you could WaitTicks(x) to wait x number of ticks, and in the user layer, you could run WaitFrames(x) to wait x frames.
Even professional native concurrency libraries use the same kind of yielding behaviour.
Lots of good examples for game developers. I'll give another in the application extension space. Consider the scenario where the application has an engine that can run a users routines in Lua while doing the core functionality in C. If the user needs to wait for the engine to get to a specific state (e.g. waiting for data to be received), you either have to:
multi-thread the C program to run Lua in a separate thread and add in locking and synchronization methods,
abend the Lua routine and retry from the beginning with a state passed to the function to skip anything, least you rerun some code that should only be run once, or
yield the Lua routine and resume it once the state has been reached in C
The third option is the easiest for me to implement, avoiding the need to handle multi-threading on multiple platforms. It also allows the user's code to run unmodified, appearing as if the function they called took a long time.

Resources