how to save a Pytorch model? - pytorch

I am new to Deep learning and I want to know, how can I save the final model in Pytorch? I tried some things that were mentioned but I got confused with, how to save the model and how to load it back?

to save:
# save the weights of the model to a .pt file
torch.save(model.state_dict(), "your_model_path.pt")
to load:
# load your model architecture/module
model = YourModel()
# fill your architecture with the trained weights
model.load_state_dict(torch.load("your_model_path.pt"))

Related

What is the difference in saving the model as cnn.model or cnn.h5?How are these extensions different?

I am using model.save("cnn.model") and model.save("cnn.h5") to save the model after training.
What is the difference of the saving the model in 2 different extensions?
File name, which includes the extension, doesn't matter. Whatever it is, Keras will save a HDF5 formatted model into that file.
Doc: How can I save a Keras model?
You can use model.save(filepath) to save a Keras model into a single
HDF5 file which will contain:
the architecture of the model, allowing to re-create the model
the weights of the model
the training configuration (loss, optimizer)
the state of the optimizer, allowing to resume training exactly where you left off.

Is there a way to create and train a model without transfer learning using tensorflow object-detection api?

I'm using faster_rcnn_resnet50 to train a model which will detect corrosions in images and I want to train a model from scratch instead of using transfer learning.
I don't know if this right but the reason I want to do this is that the already existing weights (which are trained on COCO) will affect my model trained on corrosion images.
One way I would like to do this is randomize or unfreeze the weights of the feature extractor on the resnet50 and then train the model on my images.
but there's no function or an option in the resnet50 config file to randomize or unfreeze weights.
I've made a new labelmap with a single label and tried it with transfer learning. It's working but I would like to have a model is trained just on my images and the previous weights shouldn't affect my predictions.
This is the first time I'm working with object detection and transfer learning. Will the weights of the pre-trained model on COCO affect my model which is trained on custom images of corrosion? How do you use tensorflow object-detection API without transfer learning?

LSTM model weights to train data for text classification

I built a LSTM model for text classification using Keras. Now I have new data to be trained. instead of appending to the original data and retrain the model, I thought of training the data using the model weights. i.e. making the weights to get trained with the new data.
However, irrespective of the volume i train, the model is not predicting the correct classification (even if i give the same sentence for prediction). What could be the reason?
Kindly help me.
Are you using the following to save the trained model?
model.save('model.h5')
model.save_weights('model_weights.h5')
And the following to load it?
from keras.models import load_model
model = load_model('model.h5') # Load the architecture
model = model.load_weights('model_weights.h5') # Set the weights
# train on new data
model.compile...
model.fit...
The model loaded is the exact same as the model being saved here. If you are doing this, then there must be something different in the data (in comparison with what it is trained on).

How to load weights from file and use them to predict test data in Keras

Yesterday night I let a neural network model training and that took time, so I thought to add a statement to save weights model.save_weights('first_try.h5')
Now as I had the file, I want to benefit saved file.
Prediction is like
pred=model.predict_generator(test_generator, steps=4124, verbose=1)
If you saved your model's weights you can load using load_weights method. But first you have to define your model structure.
e.g.
model = method_to_create_the_model()
model.load_weights("path_to_weight_file")

Train, Save and Load a Tensorflow Model

Refer to this to train a GAN model for MNIST dataset, I want to save a model and restore it for further prediction. After having some understanding of Saving and Importing a Tensorflow Model I am able to save and restore some variables of inputs and outputs but for this network I am able to save the model only after some specific iterations and not able to predict some output.
Did you refer to this guide? It explains very clearly how to load and save tensorflow models in all possible formats.
If you are new to ML, I'd recommend you give Keras a try first, which is much easier to use. See https://keras.io/getting-started/faq/#how-can-i-save-a-keras-model, pretty much you can use:
model.save('my_model.h5')
to save your model to disk.
model = load_model('my_model.h5')
to load your model and make prediction

Resources