problem changing input type in pytorch reinforcement learning - pytorch

I'm trying to tun a code I found on github, but keep crashing in one part and getting TypeError: only size-1 arrays can be converted to Python scalars error. I've been trying to solve it for two days now. If I understand the problem correctly I have incompatible dtypes of tensors yet I've no idea how to fix this. Everytime I try to change my tensor type to say DoubleTensor, or float64 I get other errors. I simply haven't got a clue now which part needs to be changed and how.
This is my model defined:
class Policy(nn.Module):
def __init__(self):
super(Policy, self).__init__()
self.input_layer = nn.Linear(11, 128)
self.hidden_1 = nn.Linear(128, 128)
self.hidden_2 = nn.Linear(32,31)
self.hidden_state = torch.tensor(torch.zeros(2,1,32)).cuda()
self.rnn = nn.GRU(128, 32, 2)
self.action_head = nn.Linear(31, 5)
self.value_head = nn.Linear(31, 1)
self.saved_actions = []
self.rewards = []
def reset_hidden(self):
self.hidden_state = torch.tensor(torch.zeros(2,1,32)).cuda()
def forward(self, x):
x = torch.tensor(x).cuda()
x = torch.sigmoid(self.input_layer(x))
x = torch.tanh(self.hidden_1(x))
x, self.hidden_state = self.rnn(x.view(1,-1,128), self.hidden_state.data)
x = F.relu(self.hidden_2(x.squeeze()))
action_scores = self.action_head(x)
state_values = self.value_head(x)
return F.softmax(action_scores, dim=-1), state_values
def forward(self, x):
conv_out = self.conv(x).view(x.size()[0], -1)
val = self.fc_val(conv_out)
adv = self.fc_adv(conv_out)
return val + (adv - adv.mean(dim=1, keepdim=True))
def act(self, state):
probs, state_value = self.forward(state)
m = Categorical(probs)
action = m.sample()
if action == 1 and env.state[0] < 1: action = torch.LongTensor([2]).squeeze().cuda.DoubleTensor()
if action == 4 and env.state[1] < 1: action = torch.LongTensor([2]).squeeze().cuda.DoubleTensor()
if action == 6 and env.state[2] < 1: action = torch.LongTensor([2]).squeeze().cuda.DoubleTensor()
self.saved_actions.append((m.log_prob(action), state_value))
return action.item()
This is where it crashes
env.reset()
# In case you're running this a second time with the same model, delete the gradients
del model.rewards[:]
del model.saved_actions[:]
gamma = 0.9
log_interval = 60
def finish_episode():
R = 0
saved_actions = model.saved_actions
policy_losses = []
value_losses = []
rewards = []
for r in model.rewards[::-1]:
R = r + (gamma * R)
rewards.insert(0, R)
rewards = torch.tensor(rewards)
epsilon = (torch.rand(1) / 1e4) - 5e-5
# With different architectures, I found the following standardization step sometimes
# helpful, sometimes unhelpful.
#
rewards = (rewards - rewards.mean()) / (rewards.std(unbiased=False) + epsilon)
# Alternatively, comment it out and use the following line instead:
rewards += epsilon
for (log_prob, value), r in zip(saved_actions, rewards):
reward = torch.tensor(r - value.item()).cuda()
policy_losses.append(-log_prob * reward)
value_losses.append(F.smooth_l1_loss(value, torch.tensor([r]).cuda()))
optimizer.zero_grad()
loss = torch.stack(policy_losses).sum() + torch.stack(value_losses).sum()
loss = torch.clamp(loss, -1e-5, 1e5)
loss.backward()
optimizer.step()
del model.rewards[:]
del model.saved_actions[:]
running_reward = 0
for episode in range(0, 4000):
state = env.reset()
state = state.type(torch.float32)
reward = 0
done = False
msg = None
while not done:
action = model.act(state)
state, reward, done, msg = env.step(action)
model.rewards.append(reward)
if done:
break
running_reward = running_reward * (1 - 1/log_interval) + reward * (1/log_interval)
finish_episode()
# Resetting the hidden state seems unnecessary - it's effectively random from the previous
# episode anyway, more random than a bunch of zeros.
# model.reset_hidden()
if msg["msg"] == "done" and env.portfolio_value() > env.starting_portfolio_value * 1.1 and running_reward > 500:
print("Early Stopping: " + str(int(reward)))
break
if episode % log_interval == 0:
print("""Episode {}: started at {:.1f}, finished at {:.1f} because {} # t={}, \
last reward {:.1f}, running reward {:.1f}""".format(episode, env.starting_portfolio_value, \
env.portfolio_value(), msg["msg"], env.cur_timestep, reward, running_reward))
This is the error I get
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:18: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-74-21b617d2e36f> in <module>()
46 msg = None
47 while not done:
---> 48 action = model.act(state)
49 state, reward, done, msg = env.step(action)
50 model.rewards.append(reward)
4 frames
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py in linear(input, weight, bias)
1751 if has_torch_function_variadic(input, weight):
1752 return handle_torch_function(linear, (input, weight), input, weight, bias=bias)
-> 1753 return torch._C._nn.linear(input, weight, bias)
1754
1755
RuntimeError: expected scalar type Double but found Float
This is the github I'm using:
https://github.com/tomgrek/RL-stocktrading/blob/master/Finance%20final.ipynb
I was suggested that teh problem is because when I use "state" as a parameter torch throws an error cause it expects a numeric type, but I cannot change state to any float, because I get another error that list can't be changed to float32.
I'll be super grateful if you could show me idiot-proof what I'm doing wrong.

First are you using the same environment "env" and/or dataset ?
Second, you added this line state = state.type(torch.float32) and it didn't throw an error so I suppose state was already a tensor (which is a bit weird). If you had to change the type to float32 then in the next while loop you may have forgotten to change the type.
while not done:
action = model.act(state)
state, reward, done, msg = env.step(action)
state = state.float() # To add as I think env.step(action) returns a long tensor for some reason
model.rewards.append(reward)
if done:
break
Good luck.

Related

multi-agent DQN learn single model for all agents

I'm trying to run a DQN for a multi-agent system, so there is one DNN for each agent.
It takes input=state [batch, state size, #time steps, #nodes], while for simplicity we assume #time steps=1. #nodes is number of agents. And output=Q-values for each agent.
The problem is that I test various stuff with this network, but it return not so consistent results. I suspect it has to do with me running separately DQN for each agent, but learning it via the same model. I sum the losses for all agents into one loss, and then it divide by their amount.
I'm not sure it is correct. I'd be grateful for any help.
Here's my code:
class DQN(nn.Module):
def __init__(self, args): #node_size, inputs, outputs, layers=[128, 64, 16]):
# state_size, n_actions = inputs, outputs
super(DQN, self).__init__()
self.model_type = args.model_type
if args.model_type == "seperate_state_DNN":
out_size = args.num_of_actions
self.shared_model = nn.Sequential()
h_sizes = [args.input_state_size] + args.layers
for k in range(len(h_sizes) - 1):
self.shared_model.add_module('k1'+str(k), nn.Linear(h_sizes[k], h_sizes[k + 1]))
self.shared_model.add_module('k2'+str(k), args.activations[args.layers_nl[k]])
self.shared_model.add_module('final', nn.Linear(h_sizes[-1], out_size))
def forward(self, input, i=None):
# input state dimension: [batch, state size, #time steps, #nodes]
if self.model_type == "seperate_state_DNN":
if i is None:
final_output = torch.zeros_like(input)
else:
final_output = self.shared_model(input) # [:, :, :, i].unsqueeze(3))
return final_output
And here is the calling function:
def select_action(self, state, edge_state):
#self.policy_net.eval()
sample = random.random()
if self.configuration == 2:
self.eps_threshold = 0.0 # no exploration at all, only optimal values!
else:
self.eps_threshold = self.decay_functionn()
self.steps_done += 1
if sample > self.eps_threshold:
self.last_exploration = False
with torch.no_grad():
# t.max(1) will return largest column value of each row.
# second column on max result is index of where max element was
# found, so we pick action with the larger expected reward.
state = state.to(self.device)# torch.from_numpy(state).float().to(self.device) # Convert to tensor.
state = state.unsqueeze(0) # Add batch dimension (also to action below): [batch=1, #time steps, #nodes, state size]
final_output = []
x1 = self.policy_net(state, None)#.detach()
for i in range(self.node_size):
final_output.append(self.policy_net(x1[:, :, -1, i]+state[:, :, -1, i], i).max(1)[1].detach().cpu().view(state.shape[0], -1))
# .to(self.device) # action dimension: [batch=1, #nodes]
return torch.cat(final_output, dim=1)
else:
self.last_exploration = True
return torch.randint(0, self.n_actions, (1, self.node_size))
And this is the main RL training loop:
for epi in range(self.episodes):
print("### Starting Episode: ", epi, ' ### in index=', self.run_index)
state = env.reset(self, heatup=self.sim_heatup) # single step state
done = False
while not done:
action = agent.select_action(state) # .to(device)
next_state1, reward, done = env.do_step(action)
agent.add_to_memory(state, action, next_state, reward)
agent.optimize_model()
state = next_state
agent.curr_episode += 1
# Plot and dump statistics and learning curves.
agent.dump_data_on_episode_end(plot=True)
env.capture_episode()
env.close()
Finally, this is the optimization, executed in "agent.optimize_model()" above, including the functions it uses:
def optimize_model(self):
if len(self.memory) < self.batch_size:
return
transitions = self.memory.sample(self.batch_size)
# This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = Transition(*zip(*transitions))
next_states_batch = torch.stack(batch.next_state).to(self.device)
state_batch = torch.stack(batch.state).to(self.device)
action_batch = torch.cat(batch.action).view(self.batch_size, -1).to(self.device) #torch.stack(batch.action, dim=0).to(self.device)
reward_batch = torch.cat(batch.reward).view(self.batch_size, -1).to(self.device)
# dims: states=[batch, steps, nodes, state size]; action=[batch, nodes]; reward=[batch, nodes]
loss = torch.tensor(0., device=self.device)
self.policy_net.train() # IM NOT SURE IF IT SHOULD BE HERE...
x1 = self.policy_net(state_batch, None)
x2 = self.policy_net(next_states_batch, None)
for i in range(self.node_size):
action_batch1 = action_batch[:,i].unsqueeze(1).reshape(-1, 1) # action=[batchXnodes, 1]
reward_batch1 = reward_batch[:,i].unsqueeze(1).view(-1, 1) # reward=[batchXnodes, 1]
# Compute loss
loss += self._compute_loss(i, x1[:, :, -1, i]+state_batch[:, :, -1, i], edge_state_batch, action_batch1,
x2[:, :, -1, i]+next_states_batch[:, :, -1, i], next_edge_state_batch, reward_batch1)
# Optimize the model
loss.div_(self.node_size)
self.optimizer.zero_grad()
loss.backward()
# clip grad
if self.grad_clip is not None:
for param in self.policy_net.parameters():
param.grad.data.clamp_(-self.grad_clip, self.grad_clip)
# update Policy net weights
self.optimizer.step()
#del loss
self.losses.append(loss.detach().cpu().numpy())
# update Target net weights
self._update_target()
def _compute_loss(self, i, state_batch, edge_state_batch, action_batch, next_states_batch, next_edge_state_batch, reward_batch):
# Q{policy net}(s, a): [batchXnodes, actions] ---gather---> [batchXnodes, 1=q_values according to this policy]
state_action_q_values = self.policy_net(state_batch, i).gather(1, action_batch)
# argmax{a} Q{policy net}(s', a'): [batchXnodes, actions] ---argmax---> [batchXnodes] ---unsqueeze---> [batchXnodes, 1]
next_state_actions = torch.argmax(self.policy_net(next_states_batch, i), dim=1).unsqueeze(1)
# Q{ploicy net}(s', argmax{a} Q{target net}(s', a') ): [batchXnodes, actions] --gather--> [batchXnodes, 1=q_values according to this policy]
next_state_q_values = self.target_net(next_states_batch, i).gather(1, next_state_actions)
# Q* = Disount * Q(s', argmax(..)) + R: [batchXnodes, 1]
expected_state_action_values = (next_state_q_values.detach() * self.discount) + reward_batch
loss = F.smooth_l1_loss(state_action_q_values, expected_state_action_values)
return loss
def _update_target(self):
if self.target_net is None:
# There is nothing to update.
return
# Update the target network, copying all weights and biases in DQN
if self.target_update > 1:
# Hard copy of weights.
if self.steps_done % self.target_update == 0:
self.target_net.load_state_dict(self.policy_net.state_dict())
return
elif self.target_update < 1 and self.target_update > 0:
# polyak averaging:
tau = self.target_update
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
target_param.data.copy_(tau * param + (1 - tau) * target_param)
return
else:
raise NotImplementedError
Sorry for the large question, I just wanted to supply all the necessary information.
If more information is needed I'd be happy to give it.
Any suggestion is much appreciated.
Thanks,
Shimon

DQN model for Atari game never learns

I'm trying to implement an Pong game with DQN model by torch. However I got two problems during the execution. Firstly, I found that the game never get done. Secondly, I found the loss function does not have any change in the trainning. This is my code below:
I defined a CNN network with the input of the size (batch=32, channels=4, height=84, weight=84). By this step there's nothing wrong happened:
class CNN(nn.Module):
def __init__(self, s_channels, a_space):
super(CNN, self).__init__()
self.pool = nn.MaxPool2d(kernel_size=2, stride=1)
self.conv1 = nn.Conv2d(s_channels,out_channels=32,kernel_size=8,stride=4)
self.conv2 = nn.Conv2d(32,64,4,2)
self.conv3 = nn.Conv2d(64,64,3,1)
self.fc1 = nn.Linear(64*4*4,1024)
self.fc2 = nn.Linear(1024,512)
self.fc3 = nn.Linear(512,a_space)
def forward(self,input):
output = self.pool(F.relu(self.conv1(input)))
output = self.pool(F.relu(self.conv2(output)))
output = self.pool(F.relu(self.conv3(output)))
output = output.view(-1,64*4*4)
output = F.relu(self.fc1(output))
output = F.relu(self.fc2(output))
output = F.relu(self.fc3(output))
return output
For the agent class, I defined a back propagation function to replay the weight in CNN and the data pre-processing function:
# Agent
class Agent():
def __init__(self, s_space, a_space) -> None:
# define parameters
self.epsilon = 1.0
self.min_epsilon = 0.01
self.dr = 0.995
self.lr = 0.001
self.gamma = 0.9
# define models
self.evl_net = CNN(s_space, a_space)
self.tgt_net = CNN(s_space, a_space)
self.cert = nn.SmoothL1Loss()
self.optimal = th.optim.Adam(self.evl_net.parameters(),lr=self.lr)
# define memory store
self.memory = deque(maxlen=2000)
# self.img_stack = deque(maxlen=4)
# pre-processing frame images: transform the imaages into tensors
# def bsl_image_pre_process(self,env):
# env = aw.AtariWrapper(env,noop_max=30,frame_skip=4,screen_size=84,terminal_on_life_loss=True,clip_reward = True)
# return env
def gym_image_pre_process(self,env):
#Atari preprocessing
env = gym.wrappers.AtariPreprocessing(env, noop_max=30, frame_skip=4, screen_size=84, terminal_on_life_loss=False, grayscale_obs=True, grayscale_newaxis=False, scale_obs=False)
#create frame stack
env = gym.wrappers.FrameStack(env, 4)
channels = env.observation_space.shape[0]
return env,channels
# env = aw.AtariWrapper(env,noop_max=30,frame_skip=4,screen_size=84,terminal_on_life_loss=True,clip_reward = True)
# return env
def data_pre_process(self,batch_size):
s_v = []
a_v = []
next_s_v = []
r_v = []
dones = []
materials = random.sample(self.memory,batch_size)
for t in materials:
s_v.append(t[0])
a_v.append(t[1])
next_s_v.append(t[2])
r_v.append(t[3])
dones.append(t[4])
# print(th.FloatTensor(r_v))
# print(th.FloatTensor(r_v).size())
# print(s_v)
s_v = th.Tensor(s_v) # size: [32,3,210,160]
a_v = th.LongTensor(a_v).unsqueeze(1) # size: [32,1]
next_s_v = th.Tensor(next_s_v) # size: [32,3,210,160]
r_v = th.FloatTensor(r_v) # size: [32]
return s_v, a_v, next_s_v, r_v, dones
# remember the transformed images
def record(self,tpl):
self.memory.append(tpl)
# select actions according to the states (input images with 4 channels)
def select(self,state,a_space):
actions = self.evl_net(state).data.tolist()
if(random.random() <= self.epsilon):
action = random.randint(0,a_space-1)
else:
action = actions.index(max(actions))
return action
# DQN trainning progression
def train(self,state,batch_size):
s_v,a_v,next_s_v,r_v,dones = self.data_pre_process(batch_size)
self.tgt_net.load_state_dict(self.evl_net.state_dict())
evl_Q_value = self.evl_net(s_v).gather(0,a_v) # size: [32,6].gather() -> [32,1]
tgt = self.tgt_net(next_s_v).max(1)[0].detach() # size [32,1]
tgt_Q_value = (r_v + self.gamma * tgt)
for index in range(len(dones)):
if(dones[index]==True):
tgt[index][0] = -1
# print(tgt_Q_value)
tgt_Q_value = tgt_Q_value.reshape(batch_size,1) # size: [32, 1] cannot be back propagated
# print(tgt_Q_value)
self.optimal.zero_grad()
loss = self.cert(evl_Q_value, tgt_Q_value)
print(loss)
loss.backward()
for pr in self.evl_net.parameters():
pr.grad.data.clamp_(-1, 1)
self.optimal.step()
if(self.epsilon > self.min_epsilon):
self.epsilon *= self.dr
At the training stage, I found the first question. the condition of done in each episode is always false. With gym.wrappers I've pre-processed the image tensor into 48484 and the environment with only one life. But it still appears:
# main test
_display = Display(visible=0, size=(900,1400))
_display.start()
# set episode step and batch_size
episodes = 5000
batch_size = 32
env = gym.make("PongNoFrameskip-v4")
env = gym.wrappers.AtariPreprocessing(env, noop_max=30, frame_skip=4, screen_size=84, terminal_on_life_loss=False, grayscale_obs=True, grayscale_newaxis=False, scale_obs=False)
# create frame stack for the input image data (size: (4,84,84))
env = gym.wrappers.FrameStack(env, 4)
channels = env.observation_space.shape[0]
a_space = env.action_space.n
agent = Agent(channels, a_space)
# env.render()
# testing:
for e in range(episodes):
# step 1: reset the agent at the beginning
s = np.array(env.reset())
for run in range(100):
score = 0
# display.clear_output(wait=True)
# display.display(Image.fromarray(env.render(mode='rgb_array')))
# env.render("rgb_array")
img = plt.imshow(env.render('rgb_array'))
# step 2: create state space tensor
# step 3: iterate actions
a = agent.select(th.Tensor(s).unsqueeze(0),a_space)
next_s, reward, done, _ = env.step(a)
if(done==True):
next_s = None
next_s = np.array(next_s) # done is never true. Why?
# step 4: record the data into buffer
dataset = (s,a,next_s,reward,done)
agent.record(dataset)
# step 5: update state steps
s = next_s
score += reward
if(done==True or run == 99):
print("episodes:",e,"score:",score,"epsilon: {:.2}".format(agent.epsilon))
break
# step 6: training and update CNN
if(len(agent.memory) > batch_size):
agent.train(channels,batch_size)
As I tried to find this problem, I detected that the loss value never even roughly decreases(at most fluctuate around 1.2). I rechecked the input and output tensor but found nothing else. I hope to get some help for how to fix these two problems. Many thanks!

Deep Q learning not performing well for algo-trading

I have implemented a deep q learning in Python using keras framework to reproduce a paper's results. However, It is not working. Here is some info :
the training is done in 10000 step for the agent for 2 possible actions
the input vector's shape is 117
Here is the code for the algorithm (inspired from various github repos maybe I implemented the algorithm wrong)
def build_dqn(lr, n_actions, input_dims, fc1_dims, fc2_dims,CLIP_GRADIENT=1):
#set_seed(42)
model = Sequential([
Dense(fc1_dims, input_shape=(input_dims,)), # bias_regularizer=regularizers.l2(1e-4),activity_regularizer=regularizers.l2(1e-5)
Activation('relu'),
BatchNormalization(),
Dense(fc2_dims),
Activation('relu'),
BatchNormalization(),
Dense(n_actions)])
model.compile(optimizer=Adam(lr=lr, clipvalue=CLIP_GRADIENT), loss='mse')
return model
class Agent(object):
def __init__(self, alpha, gamma, n_actions, epsilon, batch_size,
input_dims, epsilon_dec=0.996, epsilon_end=0.01,
mem_size=1000000, fname='dqn_model.h5'):
self.action_space = [i for i in range(n_actions)]
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_dec = epsilon_dec
self.epsilon_min = epsilon_end
self.batch_size = batch_size
self.model_file = fname
self.memory = ReplayBuffer(mem_size, input_dims, n_actions,
discrete=True)
self.q_eval = build_dqn(alpha, n_actions, input_dims, 64, 32)
def remember(self, state, action, reward, new_state, done):
self.memory.store_transition(state, action, reward, new_state, done)
def choose_action(self, state):
state = state[np.newaxis, :]
rand = np.random.random()
if rand < self.epsilon:
action = np.random.choice(self.action_space)
else:
actions = self.q_eval.predict(state)
action = np.argmax(actions)
return action
def learn(self):
if self.memory.mem_cntr > self.batch_size:
state, action, reward, new_state, done = \
self.memory.sample_buffer(self.batch_size)
action_values = np.array(self.action_space, dtype=np.int8)
action_indices = np.dot(action, action_values)
q_eval = self.q_eval.predict(state)
q_next = self.q_eval.predict(new_state)
q_target = q_eval.copy()
batch_index = np.arange(self.batch_size, dtype=np.int32)
q_target[batch_index, action_indices] = reward + \
self.gamma*np.max(q_next, axis=1)*done
_ = self.q_eval.fit(state, q_target, verbose=0)
self.epsilon = self.epsilon*self.epsilon_dec if self.epsilon > \
self.epsilon_min else self.epsilon_min
def processState(self, state):
n = len(state)
relative_diff_matrix,prev_posiion = state[:n-1],state[n-1]
relative_diff_matrix = relative_diff_matrix.reshape((int(n/30),30))
relative_diff_matrix = np.diff(relative_diff_matrix) / relative_diff_matrix[:,:-1]
relative_diff_matrix = StandardScaler().fit_transform(relative_diff_matrix.T).T
processed_state = relative_diff_matrix.flatten()
processed_state = np.append(processed_state,prev_posiion)
return processed_state
def processReward(self, reward,rewardClipping=1):
return np.clip(reward, -rewardClipping, rewardClipping)
def train_model(self,trainingEnv, n_episodes = 1,verbose=0):
scores = []
eps_history = []
for i in range(n_episodes):
done = False
score = 0
observation = env.reset()
observation = self.processState(observation)
#observation = self.processState(observation)
while not done:
action = agent.choose_action(observation)
observation_, reward, done, info = trainingEnv.step(action)
# Remembering episode
reward = self.processReward(reward)
observation_ = self.processState(observation_)
score += reward
self.remember(observation_, action, reward, observation_, int(done))
# Remembering episode for other action => Better exploration
otherAction = int(not bool(action))
otherReward = self.processReward(info['Reward'])
otherNextState = self.processState(info['State'])
otherDone = info['Done']
self.remember(observation_, otherAction, otherReward, otherNextState, otherDone)
observation = observation_
# learning
self.learn()
if verbose :
eps_history.append(agent.epsilon)
scores.append(score)
avg_score = np.mean(scores[max(0, i-100):(i+1)])
print('episode: ', i,'score: %.2f' % score,
' average score %.2f' % avg_score)
trainingEnv.render()
def save_model(self):
self.q_eval.save(self.model_file)
def load_model(self):
self.q_eval = load_model(self.model_file)
I start with 100 $ capital I finish with slightly more or less in the horizon of 20 years (about 10000 step). I tried tuning the parameters but nothing worked.
here is the main:
env = TradingEnv(marketSymbol="GOOGL", period=PERIOD_DEFAULT, startingDate=START_DEFAULT, endingDate=END_DEFAULT, columns=COLUMNS, money=100,transactionCosts=0)
lr = 0.0005
agent = Agent(gamma=1, epsilon=0.00, alpha=lr, input_dims=117,
n_actions=2, mem_size=1000000, batch_size=32, epsilon_end=0.0)
agent.train_model(env)
I think I have managed to solve the problem. We need to set the number of episodes to a sufficiently high number (not 1), in my case it was just thirty. However, I don't know how to efficiently backtest the deep q trading agent !

RuntimeError: Error(s) in loading state_dict for Actor - torch.load()

I have created a custom environment in open ai gym and i am facing error while loading the weights Could some one help me to resolve the issue . I am training a TD3 network in a custom environment and i have trained successfully but while inferencing i am facing this issue
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.layer_1 = nn.Linear(state_dim, 400)
self.layer_2 = nn.Linear(400, 300)
self.layer_3 = nn.Linear(300, action_dim)
self.max_action = max_action
def forward(self, x):
x = F.relu(self.layer_1(x))
x = F.relu(self.layer_2(x))
x = self.max_action * torch.tanh(self.layer_3(x))
return x
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
# Defining the first Critic neural network
self.layer_1 = nn.Linear(state_dim + action_dim, 400)
self.layer_2 = nn.Linear(400, 300)
self.layer_3 = nn.Linear(300, 1)
# Defining the second Critic neural network
self.layer_4 = nn.Linear(state_dim + action_dim, 400)
self.layer_5 = nn.Linear(400, 300)
self.layer_6 = nn.Linear(300, 1)
def forward(self, x, u):
xu = torch.cat([x, u], 1)
# Forward-Propagation on the first Critic Neural Network
x1 = F.relu(self.layer_1(xu))
x1 = F.relu(self.layer_2(x1))
x1 = self.layer_3(x1)
# Forward-Propagation on the second Critic Neural Network
x2 = F.relu(self.layer_4(xu))
x2 = F.relu(self.layer_5(x2))
x2 = self.layer_6(x2)
return x1, x2
def Q1(self, x, u):
xu = torch.cat([x, u], 1)
x1 = F.relu(self.layer_1(xu))
x1 = F.relu(self.layer_2(x1))
x1 = self.layer_3(x1)
return x1
# Selecting the device (CPU or GPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Building the whole Training Process into a class
class TD3(object):
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = torch.optim.Adam(self.actor.parameters())
self.critic = Critic(state_dim, action_dim).to(device)
self.critic_target = Critic(state_dim, action_dim).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = torch.optim.Adam(self.critic.parameters())
self.max_action = max_action
def select_action(self, state):
state = torch.Tensor(state.reshape(1, -1)).to(device)
return self.actor(state).cpu().data.numpy().flatten()
def train(self, replay_buffer, iterations, batch_size=100, discount=0.99, tau=0.005, policy_noise=0.2, noise_clip=0.5, policy_freq=2):
for it in range(iterations):
# Step 4: We sample a batch of transitions (s, s’, a, r) from the memory
batch_states, batch_next_states, batch_actions, batch_rewards, batch_dones = replay_buffer.sample(batch_size)
state = torch.Tensor(batch_states).to(device)
next_state = torch.Tensor(batch_next_states).to(device)
action = torch.Tensor(batch_actions).to(device)
reward = torch.Tensor(batch_rewards).to(device)
done = torch.Tensor(batch_dones).to(device)
# Step 5: From the next state s’, the Actor target plays the next action a’
next_action = self.actor_target(next_state)
# Step 6: We add Gaussian noise to this next action a’ and we clamp it in a range of values supported by the environment
noise = torch.Tensor(batch_actions).data.normal_(0, policy_noise).to(device)
noise = noise.clamp(-noise_clip, noise_clip)
next_action = (next_action + noise).clamp(-self.max_action, self.max_action)
# Step 7: The two Critic targets take each the couple (s’, a’) as input and return two Q-values Qt1(s’,a’) and Qt2(s’,a’) as outputs
target_Q1, target_Q2 = self.critic_target(next_state, next_action)
# Step 8: We keep the minimum of these two Q-values: min(Qt1, Qt2)
target_Q = torch.min(target_Q1, target_Q2)
# Step 9: We get the final target of the two Critic models, which is: Qt = r + γ * min(Qt1, Qt2), where γ is the discount factor
target_Q = reward + ((1 - done) * discount * target_Q).detach()
# Step 10: The two Critic models take each the couple (s, a) as input and return two Q-values Q1(s,a) and Q2(s,a) as outputs
current_Q1, current_Q2 = self.critic(state, action)
# Step 11: We compute the loss coming from the two Critic models: Critic Loss = MSE_Loss(Q1(s,a), Qt) + MSE_Loss(Q2(s,a), Qt)
critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q)
# Step 12: We backpropagate this Critic loss and update the parameters of the two Critic models with a SGD optimizer
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Step 13: Once every two iterations, we update our Actor model by performing gradient ascent on the output of the first Critic model
if it % policy_freq == 0:
actor_loss = -self.critic.Q1(state, self.actor(state)).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Step 14: Still once every two iterations, we update the weights of the Actor target by polyak averaging
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
# Step 15: Still once every two iterations, we update the weights of the Critic target by polyak averaging
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
# Making a save method to save a trained model
def save(self, filename, directory):
torch.save(self.actor.state_dict(), '%s/%s_actor.pth' % (directory, filename))
torch.save(self.critic.state_dict(), '%s/%s_critic.pth' % (directory, filename))
# Making a load method to load a pre-trained model
def load(self, filename, directory):
self.actor.load_state_dict(torch.load('%s/%s_actor.pth' % (directory, filename)))
self.critic.load_state_dict(torch.load('%s/%s_critic.pth' % (directory, filename)))
def evaluate_policy(policy, eval_episodes=10):
avg_reward = 0.
for _ in range(eval_episodes):
obs = env.reset()
done = False
while not done:
action = policy.select_action(np.array(obs))
obs, reward, done, _ = env.step(action)
avg_reward += reward
avg_reward /= eval_episodes
print ("---------------------------------------")
print ("Average Reward over the Evaluation Step: %f" % (avg_reward))
print ("---------------------------------------")
return avg_reward
env_name = "Pygame-v0"
seed = 0
file_name = "%s_%s_%s" % ("TD3", env_name, str(seed))
print ("---------------------------------------")
print ("Settings: %s" % (file_name))
print ("---------------------------------------")
eval_episodes = 10
save_env_vid = True
env = gym.make(env_name)
max_episode_steps = env._max_episode_steps
if save_env_vid:
env = wrappers.Monitor(env, monitor_dir, force = True)
env.reset()
env.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
policy = TD3(state_dim, action_dim, max_action)
#policy.load(file_name, './pytorch_models/')
policy.load(file_name,"/content/gdrive/My Drive/reinforce/gym_game/pytorch_models")
_ = evaluate_policy(policy, eval_episodes=eval_episodes)
Traceback:
I am facing a runtime error while loading the state_dict for actor model .I searched google but couldnt find similar issues .
RuntimeError: Error(s) in loading state_dict for Actor:
Missing key(s) in state_dict: "layer_1.weight", "layer_1.bias", "layer_2.weight", "layer_2.bias", "layer_3.weight", "layer_3.bias".
Unexpected key(s) in state_dict: "encoder.0.weight", "encoder.0.bias", "encoder.2.weight", "encoder.2.bias", "encoder.2.running_mean", "encoder.2.running_var", "encoder.2.num_batches_tracked", "encoder.3.weight", "encoder.3.bias", "encoder.5.weight", "encoder.5.bias", "encoder.5.running_mean", "encoder.5.running_var", "encoder.5.num_batches_tracked", "encoder.6.weight", "encoder.6.bias", "encoder.8.weight", "encoder.8.bias", "encoder.8.running_mean", "encoder.8.running_var", "encoder.8.num_batches_tracked", "encoder.10.weight", "encoder.10.bias", "encoder.12.weight", "encoder.12.bias", "encoder.12.running_mean", "encoder.12.running_var", "encoder.12.num_batches_tracked", "encoder.13.weight", "encoder.13.bias", "encoder.15.weight", "encoder.15.bias", "encoder.15.running_mean", "encoder.15.running_var", "encoder.15.num_batches_tracked", "encoder.16.weight", "encoder.16.bias", "linear.0.weight", "linear.0.bias", "linear.2.weight", "linear.2.bias".
it was answered by #MicaelJungo
The weights you saved were not from the model you are using here. Make sure to load the correct checkpoint, which was created when training this particular model.

RuntimeError: the derivative for 'indices' is not implemented

I am following this online tutorial for coding a DQN,https://github.com/philtabor/Youtube-Code-Repository/blob/master/ReinforcementLearning/DeepQLearning/torch_deep_q_model.py
, however I am running into this Runtime Error that I am unsure of how to debug or modify to prevent this error. Thanks!
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-196-00975d66fd2d> in <module>
28 agent.storeTransition(preprocess(obs),action,reward,preprocess(obs_))
29 obs= obs_
---> 30 agent.learn(batch_size)
31 lastAction = action
32 scores.append(score)
<ipython-input-191-f6b163cc3a8a> in learn(self, batch_size)
72 Qtarget = Qpred.clone()
73 print(Qnext[1])
---> 74 Qtarget[:,maxA] = rewards + self.GAMMA*torch.max(Qnext[1])
75 # epsilon decay action
76 if self.steps > 2000:
RuntimeError: the derivative for 'indices' is not implemented
These are my code blocks in my jupyter notebook
class DeepQNetwork(nn.Module):
def __init__(self,Alpha):
super(DeepQNetwork,self).__init__()
self.conv1 = nn.Conv2d(1,32,8,stride=4, padding=1)
self.conv2 = nn.Conv2d(32,64,4,stride=2)
self.conv3 = nn.Conv2d(64,128,3)
self.fc1 = nn.Linear(128* 21* 12,512)
self.fc2 = nn.Linear(512,6)
self.optimizer = optim.RMSprop(self.parameters(), lr = Alpha)
self.loss = nn.MSELoss()
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
self.to(self.device)
def forward(self,obs):
'''Passing in a sequence of arrays'''
obs = torch.Tensor(obs).to(self.device) # send to the GPU
''' Feed forward the Network Parameters'''
obs = obs.view(-1, 1,200,125)
#print(obs.shape)
obs = F.relu(self.conv1(obs))
#print(obs.shape)
obs = F.relu(self.conv2(obs))
#print(obs.shape)
obs = F.relu(self.conv3(obs))
#print(obs.shape)
obs = obs.view(-1,128* 21* 12)
obs = F.relu(self.fc1(obs))
# 4 Rows and 6 columns
actions = self.fc2(obs)
return actions
This is the Agent Code, and it contains the error causing line of code
class DQNAgent(object):
def __init__(self, gamma, epsilon, alpha, maxMemory,
epsEnd = 0.05, replace =10000, actionSpace = [0,1,2,3,4,5]):
'''
Gamma -> discount factor of valuing current reward over future reward
Epsilon -> for trade off between exploration-exploitation
alpha -> learn rate
maxMemory -> max size of Memory buffer
epsEnd -> smallest value of Exploration
repace -> how often to replace target network
'''
self.GAMMA = gamma
self.EPSILON = epsilon
self.EPS_END = epsEnd
self.actionSpace = actionSpace
self.maxMemory = maxMemory
self.steps = 0
self.learn_step_counter = 0
self.memory = []
self.memCount = 0
self.replace_tgt_count = replace
self.Q_eval = DeepQNetwork(alpha)
self.Q_next = DeepQNetwork(alpha)
def storeTransition(self, state, action, reward, state_):
'''Stores Transition states'''
if self.memCount < self.maxMemory:
self.memory.append([state,action,reward,state_])
else:
self.memory[self.memCount%self.maxMemory] = [state,action,reward,state_]
self.memCount +=1
def chooseAction(self,obs):
'''
Exploration if np.random > epsilon
else take epsilon greedy action
'''
rand = np.random.random()
# Get the value for all actions for the current set of states
# Forward pass the stack of frames to get value of each action given subset of staes in obs
actions = self.Q_eval.forward(obs)
if rand<1-self.EPSILON:
action = torch.argmax(actions[1]).item()
else:
action = np.random.choice(self.actionSpace)
self.steps += 1
return action
def learn(self, batch_size):
self.Q_eval.optimizer.zero_grad()
#0 gradient to do batch optimisation
if self.replace_tgt_count is not None and self.learn_step_counter % self.replace_tgt_count==0:
self.Q_next.load_state_dict(self.Q_eval.state_dict())
# memory subsampling
if self.memCount + batch_size < self.maxMemory:
memStart = int(np.random.choice(range(self.memCount)))
else:
memStart = int(np.random.choice(range(self.maxMemory-batch_size-1)))
miniBatch = self.memory[memStart:memStart+batch_size]
memory = np.array(miniBatch)
#feed forward current state and successor state conv to list as memory is array of numpy objects
Qpred = self.Q_eval.forward(list(memory[:,0][:])).to(self.Q_eval.device)
Qnext = self.Q_next.forward(list(memory[:,3][:])).to(self.Q_eval.device)
maxA = torch.argmax(Qnext,dim = 1).to(self.Q_eval.device)
#calculate rewards
rewards = torch.Tensor(list(memory[:,2])).to(self.Q_eval.device)
# loss for every action except max action to be 0
Qtarget = Qpred.clone()
print(Qnext.shape)
Qtarget[:,maxA] = rewards + self.GAMMA*torch.max(Qnext[1])# PROBLEMATIC LINE
# epsilon decay action
if self.steps > 2000:
if self.EPSILON-1e-4 >self.EPS_END:
self.EPSILON-= 1e-4
else:
self.EPSILON = self.EPS_END
loss = self.Q_eval.loss(Qtarget,Qpred).to(self.Q_eval.device)
loss.backward()
self.Q_eval.optimizer.step()
self.learn_step_counter +=1
env = gym.make("Invader-v0")
agent = DQNAgent(gamma=0.95,epsilon = 1.0,alpha = 0.003, maxMemory = 5000,replace = None)
while agent.memCount < agent.maxMemory:
obs = env.reset()
done = False
lives = 3
while not done:
action = env.action_space.sample()
obs_ , reward, done, info = env.step(action)
if done and info['lives']<lives:
lives = info['lives']
reward -= 200
agent.storeTransition(preprocess(obs),action,reward,preprocess(obs_))
obs= obs_
initialised = True
scores = []
epsHistory = []
numGames = 50
batch_size = 16
for i in range(numGames):
print(f'starting game {i+1}, epsilon = {agent.EPSILON}')
epsHistory.append(agent.EPSILON)
done = False
obs = env.reset()
frames = [np.sum(obs)]
score = 0
lastAction = 0
lives = 3
while not done:
if len(frames) == 4:
action = agent.chooseAction(frames)
frames = []
else:
action = lastAction
obs_, reward, done, info = env.step(action)
score += score-reward
frames.append(preprocess(obs_))
if done and info['lives'] < lives:
reward -=200
agent.storeTransition(preprocess(obs),action,reward,preprocess(obs_))
obs= obs_
agent.learn(batch_size)
lastAction = action
scores.append(score)
print('score: ', score)
x = [i+1 for i in range(numGames)]
You have to do use .detach() for :
Qnext = self.Q_next.forward(list(memory[:,3][:])).detach().to(self.Q_eval.device)

Resources