The documentation for scipy's binned_statistic_2d function gives an example for a 2D histogram:
from scipy import stats
x = [0.1, 0.1, 0.1, 0.6]
y = [2.1, 2.6, 2.1, 2.1]
binx = [0.0, 0.5, 1.0]
biny = [2.0, 2.5, 3.0]
ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx, biny])
Makes sense, but I'm now trying to implement a custom function. The custom function description is given as:
function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error.
I wasn't sure exactly how to implement this, so I thought I'd check my understanding by writing a custom function that reproduces the count option. I tried
def custom_func(values):
return len(values)
x = [0.1, 0.1, 0.1, 0.6]
y = [2.1, 2.6, 2.1, 2.1]
binx = [0.0, 0.5, 1.0]
biny = [2.0, 2.5, 3.0]
ret = stats.binned_statistic_2d(x, y, None, custom_func, bins=[binx, biny])
but this generates an error like so:
556 # Make sure `values` match `sample`
557 if(statistic != 'count' and Vlen != Dlen):
558 raise AttributeError('The number of `values` elements must match the '
559 'length of each `sample` dimension.')
561 try:
562 M = len(bins)
AttributeError: The number of `values` elements must match the length of each `sample` dimension.
How is this custom function supposed to be defined?
The reason for this error is that when using a custom statistic function (or any non-count statistic), you have to pass some array or list of arrays to the values parameter (with the number of elements matching the number in x). You can't just leave it as None as in your example, even though it is irrelevant and does not get used when computing counts of data points in each bin.
So, to match the results, you can just pass the same x object to the values parameter:
def custom_func(values):
return len(values)
x = [0.1, 0.1, 0.1, 0.6]
y = [2.1, 2.6, 2.1, 2.1]
binx = [0.0, 0.5, 1.0]
biny = [2.0, 2.5, 3.0]
ret = stats.binned_statistic_2d(x, y, x, custom_func, bins=[binx, biny])
print(ret)
# BinnedStatistic2dResult(statistic=array([[2., 1.],
# [1., 0.]]), x_edge=array([0. , 0.5, 1. ]), y_edge=array([2. , 2.5, 3. ]), binnumber=array([5, 6, 5, 9]))
The result matches that of the count statistic:
ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx, biny])
print(ret)
# BinnedStatistic2dResult(statistic=array([[2., 1.],
# [1., 0.]]), x_edge=array([0. , 0.5, 1. ]), y_edge=array([2. , 2.5, 3. ]), binnumber=array([5, 6, 5, 9]))
I face the following problem with GEKKO: some parameters (.Param) are changing (others not) when solving a model and I cannot determine why.
Background: I am currently trying to translate code from EViews (see gennaro.zezza.it) to python. I use GEKKO to simulate a system consisting out of 11 equations (for now). I do want to use parameters (instead of constants which seem to work perfectly fine) as I need to ('exogenously') change their value over time (and thus need an array).
Example: In the following example, an 'economic system' reacts to new government expenditures. Here, I particularly face problems with "m.alpha1" and "m.alpha2" - if they are introduced as ".Param" their value will change to 1.0 (instead of 0.6 and 0.4) when solving the model. How can I stop GEKKO from doing this? (Again, I want to be able to change, e.g., alpha1 to 0.7 after time x. E.g., lower and upper bounds won't help here.)
Thanks for your help!!
Code:
from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
import plotly.graph_objects as go
# Initialize model
m = GEKKO(remote=False)
tstart = 1945
tend = 2000
tdur = tend-tstart+1
m.time = np.linspace(0, tend-tstart, tdur)
# Model parameters
m.t = m.Param(value=m.time)
# Exogenous parameters
alpha1_ex = 0.6
alpha2_ex = 0.4
theta_ex = 0.2
w_ex = 1
# -as .Const
m.alpha1 = m.Const(value=alpha1_ex, name='Propensity to consume out of income')
m.alpha2 = m.Const(value=alpha2_ex, name='Propensity to consume out of wealth')
#m.theta = m.Const(value=theta_ex, name='Tax rate')
#m.w = m.Const(value=w_ex, name='Wage rate')
# -as .Param: issues with alpha1 & alpha2
#m.alpha1 = m.Param(value=np.full(tdur,alpha1_ex), name='Propensity to consume out of income')
#m.alpha2 = m.Param(value=np.full(tdur,alpha2_ex), name='Propensity to consume out of wealth')
m.theta = m.Param(value=np.full(tdur,theta_ex), name='Tax rate')
m.w = m.Param(value=np.ones(tdur), name='Wage rate')
# no issues with g_d
m.g_d = m.Param(value=np.zeros(tdur), name='Government goods, demand')
m.g_d[1:] = 20
# Endogenous variables
m.c_d = m.Var(value=0, name='Consumption goods demand by households')
m.c_s = m.Var(value=0, name='Consumption goods supply')
m.g_s = m.Var(value=0, name='Government goods, supply')
m.h_h = m.Var(value=0, name='Cash money held by households')
m.h_s = m.Var(value=0, name='Cash money supplied by government')
m.n_d = m.Var(value=0, name='Demand for labor')
m.n_s = m.Var(value=0, name='Supply for labor')
m.t_d = m.Var(value=0, name='Taxes, "demand"')
m.t_s = m.Var(value=0, name='Taxes, "supply"')
m.y = m.Var(value=0, name='Income (=GDP)')
m.yd = m.Var(value=0, name='Disposable income of households')
# Lag variables
m.h_h_lag = m.Var(value=0, name='Cash money held by households (t-1)')
m.delay(m.h_h,m.h_h_lag,1) # m.h_h_lag = m.h_h(t-1)
m.h_s_lag = m.Var(value=0, name='Cash money supplied by government (t-1)')
m.delay(m.h_s,m.h_s_lag,1)
# Equations
m.Equation(m.c_s == m.c_d)
m.Equation(m.g_s == m.g_d)
m.Equation(m.t_s == m.t_d)
m.Equation(m.n_s == m.n_d)
m.Equation(m.yd == m.w*m.n_s - m.t_s)
m.Equation(m.t_d == m.theta*m.w*m.n_s)
m.Equation(m.c_d == m.alpha1*m.yd + m.alpha2*m.h_h_lag)
m.Equation(m.h_s == m.h_s_lag + m.g_d - m.t_d)
m.Equation(m.h_h == m.h_h_lag + m.yd - m.c_d)
m.Equation(m.y == m.c_s + m.g_s)
m.Equation(m.n_d == m.y/m.w)
# Solve
m.options.IMODE = 4
m.solve(disp=False)
print("Alpha1 = ", m.alpha1.value)
print("Alpha2 = ", m.alpha2.value)
print("Theta = ", m.theta.value)
print("w = ", m.w.value)
# Plot results
fig, axes = plt.subplots(2, 2, sharex=True, figsize=(8, 7))
fig.canvas.manager.set_window_title('Figures Chapter 3')
fig.suptitle('SIM Model - basic')
x_major_ticks = np.arange(0,tdur,5)
axes[0,0].plot(m.time, m.g_d.value, '-', color='black', linewidth=1)
axes[0,0].legend([m.g_d.name],loc=4,fontsize=7)
axes[0,0].grid()
axes[0,0].set_xticks(x_major_ticks)
axes[1,0].plot(m.time, m.y.value, '-', color='red', linewidth=1)
axes[1,0].legend([m.y.name],loc=4,fontsize=7)
axes[1,0].grid()
axes[1,0].set_xlabel('Time (years)')
axes[1,0].set_xticks(x_major_ticks)
axes[0,1].plot(m.time, m.c_d.value, '-', color='blue', linewidth=0.75)
axes[0,1].plot(m.time, m.yd.value, '-', color='green', linewidth=0.75)
axes[0,1].legend([m.c_d.name,m.yd.name],loc=4,fontsize=7)
axes[0,1].grid()
axes[0,1].set_xticks(x_major_ticks)
ln1 = axes[1,1].plot(m.time, m.h_h.value, '-', color='purple', linewidth=0.75)
axes[1,1].tick_params(axis='y', labelcolor='purple')
ax2 = axes[1,1].twinx()
ln2 = ax2.plot(m.time, [a_i - b_i for a_i, b_i in zip(m.h_h, m.h_h_lag)], '-', color='orange', linewidth=0.75)
ax2.tick_params(axis='y', labelcolor='orange')
lns = ln1+ln2
axes[1,1].legend(lns,[m.h_h.name,'Household savings'],loc=4,fontsize=7)
axes[1,1].grid()
axes[1,1].set_xticks(x_major_ticks)
axes[1,1].set_xlabel('Time (years)')
plt.show()
Output #1: with m.alpha1 and m.alpha2 as .const
Alpha1 = 0.6
Alpha2 = 0.4
Theta = [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2]
w = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
Output #2: with m.alpha1 as .param
Alpha1 = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
Alpha2 = 0.4
Theta = [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2]
w = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
The problem is that the name of the variable name='Propensity to consume out of income' is over 25 characters long.
m.alpha1 = m.Param(value=np.full(tdur,alpha1_ex), name='Propensity to consume out of income')
m.alpha2 = m.Param(value=np.full(tdur,alpha2_ex), name='Propensity to consume out of wealth')
The model file is produced correctly (gk_model0.apm) but the data file (gk_model0.csv) header is truncated to 25 characters. The files are accessible with m.open_folder(). The bug is in this line of gk_write_files.py where numbers are output as strings of length 25.
np.savetxt(os.path.join(self._path,file_name), csv_data.T, delimiter=",", fmt='%1.25s')
I've added this as a bug report with tracking on GitHub. One work-around is to use shorter variable names or leave off the variable names.
m.alpha1 = m.Param(value=np.full(tdur,alpha1_ex)) # Propensity to consume out of income
I have some 2D data with x and y coordinates both within [0,1], plotted using pcolormesh.
Now I want to symmetrize the plot to [-0.5, 0.5] for both x and y coordinates. In Matlab I was able to achieve this by changing x and y from e.g. [0, 0.2, 0.4, 0.6, 0.8] to [0, 0.2, 0.4, -0.4, -0.2], without rearranging the data. However, with pcolormesh I cannot get the desired result.
A minimum example is shown below, with data represented simply by x+y:
import matplotlib.pyplot as plt
import numpy as np
x,y = np.mgrid[0:1:5j,0:1:5j]
fig,(ax1,ax2,ax3) = plt.subplots(1,3,figsize=(9,3.3),constrained_layout=1)
# original plot spanning [0,1]
img1 = ax1.pcolormesh(x,y,x+y,shading='auto')
# shift x and y from [0,1] to [-0.5,0.5]
x = x*(x<0.5)+(x-1)*(x>0.5)
y = y*(y<0.5)+(y-1)*(y>0.5)
img2 = ax2.pcolormesh(x,y,x+y,shading='auto') # similar code works in Matlab
# for this specific case, the following is close to the desired result, I can just rename x and y tick labels
# to [-0.5,0.5], but in general data is not simply x+y
img3 = ax3.pcolormesh(x+y,shading='auto')
fig.colorbar(img1,ax=[ax1,ax2,ax3],orientation='horizontal')
The corresponding figure is below, any suggestion on what is missed would be appreciated!
Let's look at what you want to achieve in a 1D example.
You have x values between 0 and 1 and a dummy function f(x) = 20*x to produce some values.
# x = [0, .2, .4, .6, .8] -> [0, .2, .4, -.4, -.2] -> [-.4, .2, .0, .2, .4])
# fx = [0, 4, 8, 12, 16] -> [0, 4, 8, 12, 16] -> [ 12, 16, 0, 4, 8]
# ^ only flip and shift x not fx ^
You could use np.roll() to achieve the last operation.
I used n=14 to make the result better visible and show that this approach works for arbitrary n.
import numpy as np
import matplotlib.pyplot as plt
n = 14
x, y = np.meshgrid(np.linspace(0, 1, n, endpoint=False),
np.linspace(0, 1, n, endpoint=False))
z = x + y
x_sym = x*(x <= .5)+(x-1)*(x > .5)
# array([[ 0. , 0.2, 0.4, -0.4, -0.2], ...
x_sym = np.roll(x_sym, n//2, axis=(0, 1))
# array([[-0.4, -0.2, 0. , 0.2, 0.4], ...
y_sym = y*(y <= .5)+(y-1)*(y > .5)
y_sym = np.roll(y_sym, n//2, axis=(0, 1))
z_sym = np.roll(z, n//2, axis=(0, 1))
# array([[1.2, 1.4, 0.6, 0.8, 1. ],
# [1.4, 1.6, 0.8, 1. , 1.2],
# [0.6, 0.8, 0. , 0.2, 0.4],
# [0.8, 1. , 0.2, 0.4, 0.6],
# [1. , 1.2, 0.4, 0.6, 0.8]])
fig, (ax1, ax2) = plt.subplots(1, 2)
img1 = ax1.imshow(z, origin='lower', extent=(.0, 1., .0, 1.))
img2 = ax2.imshow(z_sym, origin='lower', extent=(-.5, .5, -.5, .5))
I want to create a while loop in python which will give an output as a list [0.00, 0.05, 0.10, 0.15,...., 1.00]
I tried doing it by following method:
alpha=0
alphalist=list()
while alpha<=1:
alphalist.append(alpha)
alpha+=0.05
print(alphalist)
I got the output as [0, 0.05, 0.1, 0.15000000000000002, 0.2, 0.25, 0.3, 0.35, 0.39999999999999997, 0.44999999999999996, 0.49999999999999994, 0.5499999999999999, 0.6, 0.65, 0.7000000000000001, 0.7500000000000001, 0.8000000000000002, 0.8500000000000002, 0.9000000000000002, 0.9500000000000003]
But What I want is this: [0.00, 0.05, 0.10, 0.15,...., 1.00]
This is the result of floating-point error. 0.05 isn't really the rational number 1/20 to begin with, so any arithmetic involving it may differ from what you expect.
Dividing two integers, rather than starting with a floating-point value, helps mitigate the problem.
>>> [x/100 for x in range(0, 101, 15)]
[0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0]
There are some numbers that can cause imprecisions with the floating number system computers use. You're just seeing an example of that.
What I would do, if you want to continue using the while loop this way, is to add another line with
alpha = round(alpha,2)
Using matplotlib, python3.6. I am trying to create some quiverkeys for a quiver plot but having a hard time getting the label colors to match certain arrows. Below is a simplified version of the code to show the issue. When I use the same color (0.3, 0.1, 0.2, 1.0 ) for a vector at (1,1) and as 'labelcolor' of a quiverkey I see 2 different colors.
q=plt.quiver([1, 2,], [1, 1],
[[49],[49]],
[0],
[[(0.6, 0.8, 0.5, 1.0 )],
[(0.3, 0.1, 0.2, 1.0 )]],
angles=[[45],[90]])
plt.quiverkey(q, .5, .5, 7, r'vector2', labelcolor=(0.3, 0.1, .2, 1),
labelpos='S', coordinates = 'figure')
Supposedly you meant to be using the color argument of quiver to set the actual colors.
import matplotlib.pyplot as plt
q=plt.quiver([1, 2,], [1, 1], [5,0], [5,5],
color=[(0.6, 0.8, 0.5, 1.0 ), (0.3, 0.1, 0.2, 1.0 )])
plt.quiverkey(q, .5, .5, 7, r'vector2', labelcolor=(0.3, 0.1, .2, 1),
labelpos='S', coordinates = 'figure')
plt.show()
Else, the C argument is interpreted as the values to map to colors according to the default colormap. Since you only have two arrows, only the first two values from the 8 numbers in the array given to the C argument are taken into account. But the colormap normalization uses all of those values, such that it ranges between 0.1 and 1.0. The call
q=plt.quiver([1, 2,], [1, 1], [5,0], [5,5],
[(0.6, 0.8, 0.5, 1.0 ), (0.3, 0.1, 0.2, 1.0 )])
is hence equivalent to
q=plt.quiver([1, 2,], [1, 1], [5,0], [5,5],
[0.6, 0.8], norm=plt.Normalize(vmin=0.1, vmax=1))
resulting in the first arrows color to be the value of 0.6 in the viridis colormap normalized between 0.1 and 1.0, and the second arrow to 0.8 in that colormap.
This becomes apparent if we add plt.colorbar(q, orientation="horizontal"):