Pyplot: subsequent plots with a gradient of colours [duplicate] - python-3.x

I am plotting multiple lines on a single plot and I want them to run through the spectrum of a colormap, not just the same 6 or 7 colors. The code is akin to this:
for i in range(20):
for k in range(100):
y[k] = i*x[i]
plt.plot(x,y)
plt.show()
Both with colormap "jet" and another that I imported from seaborn, I get the same 7 colors repeated in the same order. I would like to be able to plot up to ~60 different lines, all with different colors.

The Matplotlib colormaps accept an argument (0..1, scalar or array) which you use to get colors from a colormap. For example:
col = pl.cm.jet([0.25,0.75])
Gives you an array with (two) RGBA colors:
array([[ 0. , 0.50392157, 1. , 1. ],
[ 1. , 0.58169935, 0. , 1. ]])
You can use that to create N different colors:
import numpy as np
import matplotlib.pylab as pl
x = np.linspace(0, 2*np.pi, 64)
y = np.cos(x)
pl.figure()
pl.plot(x,y)
n = 20
colors = pl.cm.jet(np.linspace(0,1,n))
for i in range(n):
pl.plot(x, i*y, color=colors[i])

Bart's solution is nice and simple but has two shortcomings.
plt.colorbar() won't work in a nice way because the line plots aren't mappable (compared to, e.g., an image)
It can be slow for large numbers of lines due to the for loop (though this is maybe not a problem for most applications?)
These issues can be addressed by using LineCollection. However, this isn't too user-friendly in my (humble) opinion. There is an open suggestion on GitHub for adding a multicolor line plot function, similar to the plt.scatter(...) function.
Here is a working example I was able to hack together
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
def multiline(xs, ys, c, ax=None, **kwargs):
"""Plot lines with different colorings
Parameters
----------
xs : iterable container of x coordinates
ys : iterable container of y coordinates
c : iterable container of numbers mapped to colormap
ax (optional): Axes to plot on.
kwargs (optional): passed to LineCollection
Notes:
len(xs) == len(ys) == len(c) is the number of line segments
len(xs[i]) == len(ys[i]) is the number of points for each line (indexed by i)
Returns
-------
lc : LineCollection instance.
"""
# find axes
ax = plt.gca() if ax is None else ax
# create LineCollection
segments = [np.column_stack([x, y]) for x, y in zip(xs, ys)]
lc = LineCollection(segments, **kwargs)
# set coloring of line segments
# Note: I get an error if I pass c as a list here... not sure why.
lc.set_array(np.asarray(c))
# add lines to axes and rescale
# Note: adding a collection doesn't autoscalee xlim/ylim
ax.add_collection(lc)
ax.autoscale()
return lc
Here is a very simple example:
xs = [[0, 1],
[0, 1, 2]]
ys = [[0, 0],
[1, 2, 1]]
c = [0, 1]
lc = multiline(xs, ys, c, cmap='bwr', lw=2)
Produces:
And something a little more sophisticated:
n_lines = 30
x = np.arange(100)
yint = np.arange(0, n_lines*10, 10)
ys = np.array([x + b for b in yint])
xs = np.array([x for i in range(n_lines)]) # could also use np.tile
colors = np.arange(n_lines)
fig, ax = plt.subplots()
lc = multiline(xs, ys, yint, cmap='bwr', lw=2)
axcb = fig.colorbar(lc)
axcb.set_label('Y-intercept')
ax.set_title('Line Collection with mapped colors')
Produces:
Hope this helps!

An anternative to Bart's answer, in which you do not specify the color in each call to plt.plot is to define a new color cycle with set_prop_cycle. His example can be translated into the following code (I've also changed the import of matplotlib to the recommended style):
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 2*np.pi, 64)
y = np.cos(x)
n = 20
ax = plt.axes()
ax.set_prop_cycle('color',[plt.cm.jet(i) for i in np.linspace(0, 1, n)])
for i in range(n):
plt.plot(x, i*y)

If you are using continuous color pallets like brg, hsv, jet or the default one then you can do like this:
color = plt.cm.hsv(r) # r is 0 to 1 inclusive
Now you can pass this color value to any API you want like this:
line = matplotlib.lines.Line2D(xdata, ydata, color=color)

This approach seems to me like the most concise, user-friendly and does not require a loop to be used. It does not rely on user-made functions either.
import numpy as np
import matplotlib.pyplot as plt
# make 5 lines
n_lines = 5
x = np.arange(0, 2).reshape(-1, 1)
A = np.linspace(0, 2, n_lines).reshape(1, -1)
Y = x # A
# create colormap
cm = plt.cm.bwr(np.linspace(0, 1, n_lines))
# plot
ax = plt.subplot(111)
ax.set_prop_cycle('color', list(cm))
ax.plot(x, Y)
plt.show()
Resulting figure here

Related

Coordinate conversion problem of a FITS file

I have loaded and plotted a FITS file in python.
With the help of a previous post, I have managed to get the conversion of the axis from pixels to celestial coordinates. But I can't manage to get them in milliarcseconds (mas) correctly.
The code is the following
import numpy as np
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.wcs import WCS
from astropy.io import fits
from astropy.utils.data import get_pkg_data_filename
filename = get_pkg_data_filename('hallo.fits')
hdu = fits.open(filename)[0]
wcs = WCS(hdu.header).celestial
wcs.wcs.crval = [0,0]
plt.subplot(projection=wcs)
plt.imshow(hdu.data[0][0], origin='lower')
plt.xlim(200,800)
plt.ylim(200,800)
plt.xlabel('Relative R.A ()')
plt.ylabel('Relative Dec ()')
plt.colorbar()
The output looks like
The y-label is cut for some reason, I do not know.
As it was shown in another post, one could use
wcs.wcs.ctype = [ 'XOFFSET' , 'YOFFSET' ]
to switch it to milliarcsecond, and I get
but the scale is incorrect!.
For instance, 0deg00min00.02sec should be 20 mas and not 0.000002!
Did I miss something here?
Looks like a spectral index map. Nice!
I think the issue might be that FITS implicitly uses degrees for values like CDELT. And they should be converted to mas explicitly for the plot.
The most straightforward way is to multiply CDELT values by 3.6e6 to convert from degrees to mas.
However, there is a more general approach which could be useful if you want to convert to different units at some point:
import astropy.units as u
w.wcs.cdelt = (w.wcs.cdelt * u.deg).to(u.mas)
So it basically says first that the units of CDELT are degrees and then converts them to mas.
The whole workflow is like this:
def make_transform(f):
'''use already read-in FITS file object f to build pixel-to-mas transformation'''
print("Making a transformation out of a FITS header")
w = WCS(f[0].header)
w = w.celestial
w.wcs.crval = [0, 0]
w.wcs.ctype = [ 'XOFFSET' , 'YOFFSET' ]
w.wcs.cunit = ['mas' , 'mas']
w.wcs.cdelt = (w.wcs.cdelt * u.deg).to(u.mas)
print(w.world_axis_units)
return w
def read_fits(file):
'''read fits file into object'''
try:
res = fits.open(file)
return res
except:
return None
def start_plot(i,df=None, w=None, xlim = [None, None], ylim=[None, None]):
'''starts a plot and returns fig,ax .
xlim, ylim - axes limits in mas
'''
# make a transformation
# Using a dataframe
if df is not None:
w = make_transform_df(df)
# using a header
if w is not None:
pass
# not making but using one from the arg list
else:
w = make_transform(i)
# print('In start_plot using the following transformation:\n {}'.format(w))
fig = plt.figure()
if w.naxis == 4:
ax = plt.subplot(projection = w, slices = ('x', 'y', 0 ,0 ))
elif w.naxis == 2:
ax = plt.subplot(projection = w)
# convert xlim, ylim to coordinates of BLC and TRC, perform transformation, then return back to xlim, ylim in pixels
if any(xlim) and any(ylim):
xlim_pix, ylim_pix = limits_mas2pix(xlim, ylim, w)
ax.set_xlim(xlim_pix)
ax.set_ylim(ylim_pix)
fig.add_axes(ax) # note that the axes have to be explicitly added to the figure
return fig, ax
rm = read_fits(file)
wr = make_transform(rm)
fig, ax = start_plot(RM, w=wr, xlim = xlim, ylim = ylim)
Then just plot to the axes ax with imshow or contours or whatever.
Of course, this piece of code could be reduced to meet your particular needs.

How to draw vertical average lines for overlapping histograms in a loop

I'm trying to draw with matplotlib two average vertical line for every overlapping histograms using a loop. I have managed to draw the first one, but I don't know how to draw the second one. I'm using two variables from a dataset to draw the histograms. One variable (feat) is categorical (0 - 1), and the other one (objective) is numerical. The code is the following:
for chas in df[feat].unique():
plt.hist(df.loc[df[feat] == chas, objective], bins = 15, alpha = 0.5, density = True, label = chas)
plt.axvline(df[objective].mean(), linestyle = 'dashed', linewidth = 2)
plt.title(objective)
plt.legend(loc = 'upper right')
I also have to add to the legend the mean and standard deviation values for each histogram.
How can I do it? Thank you in advance.
I recommend you using axes to plot your figure. Pls see code below and the artist tutorial here.
import numpy as np
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
mu1, sigma1 = 100, 8
mu2, sigma2 = 150, 15
x1 = mu1 + sigma1 * np.random.randn(10000)
x2 = mu2 + sigma2 * np.random.randn(10000)
fig, ax = plt.subplots(1, 1, figsize=(7.2, 7.2))
# the histogram of the data
lbs = ['a', 'b']
colors = ['r', 'g']
for i, x in enumerate([x1, x2]):
n, bins, patches = ax.hist(x, 50, density=True, facecolor=colors[i], alpha=0.75, label=lbs[i])
ax.axvline(bins.mean())
ax.legend()

How to iterate a list of list for a scatter plot and create a legend of unique elements

Background:
I have a list_of_x_and_y_list that contains x and y values which looks like:
[[(44800, 14888), (132000, 12500), (40554, 12900)], [(None, 193788), (101653, 78880), (3866, 160000)]]
I have another data_name_list ["data_a","data_b"] so that
"data_a" = [(44800, 14888), (132000, 12500), (40554, 12900)]
"data_b" = [(None, 193788), (101653, 78880), (3866, 160000)]
The len of list_of_x_and_y_list / or len of data_name_list is > 20.
Question:
How can I create a scatter plot for each item (being the same colour) in the data_name_list?
What I have tried:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax = plt.axes(facecolor='#FFFFFF')
prop_cycle = plt.rcParams['axes.prop_cycle']
colors = prop_cycle.by_key()['color']
print(list_of_x_and_y_list)
for x_and_y_list, data_name, color in zip(list_of_x_and_y_list, data_name_list, colors):
for x_and_y in x_and_y_list,:
print(x_and_y)
x, y = x_and_y
ax.scatter(x, y, label=data_name, color=color) # "label=data_name" creates
# a huge list as a legend!
# :(
plt.title('Matplot scatter plot')
plt.legend(loc=2)
file_name = "3kstc.png"
fig.savefig(file_name, dpi=fig.dpi)
print("Generated: {}".format(file_name))
The Problem:
The legend appears to be a very long list, which I don't know how to rectify:
Relevant Research:
Matplotlib scatterplot
Scatter Plot
Scatter plot in Python using matplotlib
The reason you get a long repeated list as a legend is because you are providing each point as a separate series, as matplotlib does not automatically group your data based on the labels.
A quick fix is to iterate over the list and zip together the x-values and the y-values of each series as two tuples, so that the x tuple contains all the x-values and the y tuple the y-values.
Then you can feed these tuples to the plt.plot method together with the labels.
I felt that the names list_of_x_and_y_list were uneccessary long and complicated, so in my code I've used shorter names.
import matplotlib.pyplot as plt
data_series = [[(44800, 14888), (132000, 12500), (40554, 12900)],
[(None, 193788), (101653, 78880), (3866, 160000)]]
data_names = ["data_a","data_b"]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax = plt.axes(facecolor='#FFFFFF')
prop_cycle = plt.rcParams['axes.prop_cycle']
colors = prop_cycle.by_key()['color']
for data, data_name, color in zip(data_series, data_names, colors):
x,y = zip(*data)
ax.scatter(x, y, label=data_name, color=color)
plt.title('Matplot scatter plot')
plt.legend(loc=1)
To only get one entry per data_name, you should add data_name only once as a label. The rest of the calls should go with label=None.
The simplest you can achieve this using the current code, is to set data_name to None at the end of the loop:
from matplotlib import pyplot as plt
from random import randint
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.set_facecolor('#FFFFFF')
# create some random data, suppose the sublists have different lengths
list_of_x_and_y_list = [[(randint(1000, 4000), randint(2000, 5000)) for col in range(randint(2, 10))]
for row in range(10)]
data_name_list = list('abcdefghij')
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
for x_and_y_list, data_name, color in zip(list_of_x_and_y_list, data_name_list, colors):
for x_and_y in x_and_y_list :
x, y = x_and_y
ax.scatter(x, y, label=data_name, color=color)
data_name = None
plt.legend(loc=2)
plt.show()
Some things can be simplified, making the code 'more pythonic', for example:
for x_and_y in x_and_y_list :
x, y = x_and_y
can be written as:
for x, y in x_and_y_list:
Another issue, is that with a lot of data calling scatter for every point could be rather slow. All the x and y belonging to the same list can be plotted together. For example using list comprehension:
for x_and_y_list, data_name, color in zip(list_of_x_and_y_list, data_name_list, colors):
xs = [x for x, y in x_and_y_list]
ys = [y for x, y in x_and_y_list]
ax.scatter(xs, ys, label=data_name, color=color)
scatter could even get a list of colors per point, but plotting all the points in one go, wouldn't allow for labels per data_name.
Very often, numpy is used to store numerical data. This has some advantages, such as vectorization for quick calculations. With numpy the code would look like:
import numpy as np
for x_and_y_list, data_name, color in zip(list_of_x_and_y_list, data_name_list, colors):
xys = np.array(x_and_y_list)
ax.scatter(xys[:,0], xys[:,1], label=data_name, color=color)

Draw curves with triple colors and width by using matplotlib and LineCollection [duplicate]

The figure above is a great artwork showing the wind speed, wind direction and temperature simultaneously. detailedly:
The X axes represent the date
The Y axes shows the wind direction(Southern, western, etc)
The variant widths of the line were stand for the wind speed through timeseries
The variant colors of the line were stand for the atmospheric temperature
This simple figure visualized 3 different attribute without redundancy.
So, I really want to reproduce similar plot in matplotlib.
My attempt now
## Reference 1 http://stackoverflow.com/questions/19390895/matplotlib-plot-with-variable-line-width
## Reference 2 http://stackoverflow.com/questions/17240694/python-how-to-plot-one-line-in-different-colors
def plot_colourline(x,y,c):
c = plt.cm.jet((c-np.min(c))/(np.max(c)-np.min(c)))
lwidths=1+x[:-1]
ax = plt.gca()
for i in np.arange(len(x)-1):
ax.plot([x[i],x[i+1]], [y[i],y[i+1]], c=c[i],linewidth = lwidths[i])# = lwidths[i])
return
x=np.linspace(0,4*math.pi,100)
y=np.cos(x)
lwidths=1+x[:-1]
fig = plt.figure(1, figsize=(5,5))
ax = fig.add_subplot(111)
plot_colourline(x,y,prop)
ax.set_xlim(0,4*math.pi)
ax.set_ylim(-1.1,1.1)
Does someone has a more interested way to achieve this? Any advice would be appreciate!
Using as inspiration another question.
One option would be to use fill_between. But perhaps not in the way it was intended. Instead of using it to create your line, use it to mask everything that is not the line. Under it you can have a pcolormesh or contourf (for example) to map color any way you want.
Look, for instance, at this example:
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import interp1d
def windline(x,y,deviation,color):
y1 = y-deviation/2
y2 = y+deviation/2
tol = (y2.max()-y1.min())*0.05
X, Y = np.meshgrid(np.linspace(x.min(), x.max(), 100), np.linspace(y1.min()-tol, y2.max()+tol, 100))
Z = X.copy()
for i in range(Z.shape[0]):
Z[i,:] = c
#plt.pcolormesh(X, Y, Z)
plt.contourf(X, Y, Z, cmap='seismic')
plt.fill_between(x, y2, y2=np.ones(x.shape)*(y2.max()+tol), color='w')
plt.fill_between(x, np.ones(x.shape) * (y1.min() - tol), y2=y1, color='w')
plt.xlim(x.min(), x.max())
plt.ylim(y1.min()-tol, y2.max()+tol)
plt.show()
x = np.arange(100)
yo = np.random.randint(20, 60, 21)
y = interp1d(np.arange(0, 101, 5), yo, kind='cubic')(x)
dv = np.random.randint(2, 10, 21)
d = interp1d(np.arange(0, 101, 5), dv, kind='cubic')(x)
co = np.random.randint(20, 60, 21)
c = interp1d(np.arange(0, 101, 5), co, kind='cubic')(x)
windline(x, y, d, c)
, which results in this:
The function windline accepts as arguments numpy arrays with x, y , a deviation (like a thickness value per x value), and color array for color mapping. I think it can be greatly improved by messing around with other details but the principle, although not perfect, should be solid.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
x = np.linspace(0,4*np.pi,10000) # x data
y = np.cos(x) # y data
r = np.piecewise(x, [x < 2*np.pi, x >= 2*np.pi], [lambda x: 1-x/(2*np.pi), 0]) # red
g = np.piecewise(x, [x < 2*np.pi, x >= 2*np.pi], [lambda x: x/(2*np.pi), lambda x: -x/(2*np.pi)+2]) # green
b = np.piecewise(x, [x < 2*np.pi, x >= 2*np.pi], [0, lambda x: x/(2*np.pi)-1]) # blue
a = np.ones(10000) # alpha
w = x # width
fig, ax = plt.subplots(2)
ax[0].plot(x, r, color='r')
ax[0].plot(x, g, color='g')
ax[0].plot(x, b, color='b')
# mysterious parts
points = np.array([x, y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
# mysterious parts
rgba = list(zip(r,g,b,a))
lc = LineCollection(segments, linewidths=w, colors=rgba)
ax[1].add_collection(lc)
ax[1].set_xlim(0,4*np.pi)
ax[1].set_ylim(-1.1,1.1)
fig.show()
I notice this is what I suffered.

More areas in contourf using logscale

I'm currently trying to get an impression of continuous change in my contour plot. I have to use a logscale for the values, because some of them are some orders of magnitude bigger than the others.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import ticker
K = np.linspace(-0.99, 5, 100)
x = np.linspace(1, 5, 100)
K, x = np.meshgrid(K, x)
static_diff = 1 / (1 + K)
fig = plt.figure()
plot = plt.contourf(K, x, static_diff, locator=ticker.LogLocator(numticks=300))
plt.grid(True)
plt.xlabel('K')
plt.ylabel('x')
plt.xlim([-0.99, 5])
plt.ylim([1, 5])
fig.colorbar(plot)
plt.show()
Despite the number of ticks given to be 300 it returns a plot like:
Is there a way to get more of these lines? I also tried adding the number of parameters as the fourth parameter of the plt.contourf function.
To specify the levels of a contourf plot you may
use the levels argument and supply a list of values for the levels. E.g for 20 levels,
plot = plt.contourf(K, x, static_diff, levels=np.logspace(-2, 3, 20))
use the locator argument to which you would supply a matplotlib ticker
plt.contourf(K, x, static_diff, locator=ticker.LogLocator(subs=range(1,10)))
Note however that the LogLocator does not use a numticks argument but instead a base and a subs argument to determine the locations of the ticks. See documentation.
Complete example for the latter case, which also uses a LogNormto distribute the colors better in logspace:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import ticker
import matplotlib.colors
K = np.linspace(-0.99, 5, 100)
x = np.linspace(1, 5, 100)
K, x = np.meshgrid(K, x)
static_diff = 1 / (1 + K)
fig = plt.figure()
norm= matplotlib.colors.LogNorm(vmin=static_diff.min(), vmax=static_diff.max())
plot = plt.contourf(K, x, static_diff, locator=ticker.LogLocator(subs=range(1,10)), norm=norm)
#plot = plt.contourf(K, x, static_diff, levels=np.logspace(-2, 3, 20), norm=norm)
plt.grid(True)
plt.xlabel('K')
plt.ylabel('x')
plt.xlim([-0.99, 5])
plt.ylim([1, 5])
fig.colorbar(plot)
plt.show()

Resources