I am new to pytorch.
I am trying to use a different approach when training MNIST dataset in pytorch.
Normally, we put all shuffled numbers for each batch.
What I want to do is (assuming by batch size is 20 and there are 1000 training examples).
Make a batch look this this (I wrote only labels for simplicity)
batch_1 = [0, 0, 1, 0, ... ] only 0 and 1 for this batch
batch_2 = [6, 6, 7, 7, ... ] only 6 and 7 for this batch
batch_3 = [2, 3, 2, 2, ... ] only 2 and 3 for this batch
batch_4 = [4, 5, 5, 4, ... ] only 4 and 5 for this batch
batch_5 = [6, 6, 7, 7, ... ] only 6 and 7 for this batch
batch_6 = [8, 9, 9, 9, ... ] only 8 and 9 for this batch
batch_7 = [2, 3, 2, 2, ... ] only 2 and 3 for this batch
batch_8 = [4, 5, 5, 4, ... ] only 4 and 5 for this batch
...
batch_50 = [4, 5, 5, 4, ... ] only 4 and 5 for this batch
How can I do this in pytorch??
Thank you
So far this is my implementation for training / testing.
I will expand/manipulate this code below to develop the above.
import torch
from torch.utils.data import DataLoader, Subset
import torchvision.datasets as datasets
from torchvision import transforms
import numpy as np
mnist_trainset = datasets.MNIST(root='./data', train=True,
download=True,
transform=transforms.Compose([transforms.ToTensor()]))
mnist_testset = datasets.MNIST(root='./data',
train=False,
download=True,
transform=transforms.Compose([transforms.ToTensor()]))
class_inds = [torch.where(mnist_trainset.targets == class_idx)[0]
for class_idx in mnist_trainset.class_to_idx.values()]
train_dataloaders = [
DataLoader(dataset=Subset(mnist_trainset, inds),
batch_size=50,
shuffle=True,
drop_last=False
)
for inds in class_inds
]
test_dataloader = torch.utils.data.DataLoader(mnist_testset,
batch_size=50,
shuffle=False)
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear_1 = torch.nn.Linear(784, 256)
self.linear_2 = torch.nn.Linear(256, 10)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = x.reshape(x.size(0), -1)
x = self.linear_1(x)
x = self.sigmoid(x)
pred = self.linear_2(x)
return pred
model = Model()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
epochs = 20
criterion = torch.nn.CrossEntropyLoss()
test_acc = list()
for epoch in range(epochs):
print(f"epoch {epoch} started")
model.train()
itr = 0
iterators = list(map(iter, train_dataloaders))
while iterators:
itr = itr + 1
iterator = np.random.choice(iterators)
try:
image, label = next(iterator)
optimizer.zero_grad()
pred = model(image)
loss = criterion(pred, label)
loss.backward()
optimizer.step()
except StopIteration:
iterators.remove(iterator)
model.eval()
total = 0
for itr, (image, label) in enumerate(test_dataloader):
pred = model(image)
loss = criterion(pred, label)
# we now need softmax because we are testing.
pred = torch.nn.functional.softmax(pred, dim=1)
for i, p in enumerate(pred):
if label[i] == torch.max(p.data, 0)[1]:
total = total + 1
accuracy = total / len(mnist_testset)
# append accuracy here
test_acc.append(accuracy)
Related
I wanna use vgg16 to get features and label for SVM image classification.
I get the following error
y should be a 1d array, got an array of shape (14630, 3) instead.
this is my code for extract features and label
def extract_features(directory, sample_count):
features = np.zeros(shape=(sample_count, 7, 7, 512))
labels = np.zeros(shape=(sample_count,3))
generator = ImageDataGenerator(rescale=1./255).flow_from_directory(directory,target_size=(224, 224),batch_size = batch_size, class_mode='categorical')
i = 0
print('Entering for loop...')
for inputs_batch, labels_batch in generator:
features_batch = model.predict(inputs_batch)
features[i * batch_size : (i + 1) * batch_size] = features_batch
labels[i * batch_size : (i + 1) * batch_size] = labels_batch
i += 1
if i * batch_size >= sample_count:
break
return features, labels
train_features, train_labels = extract_features(train_dir, 14630)
validation_features, validation_labels = extract_features(validation_dir, 1500)
train_features = np.reshape(train_features, (14630, 7 * 7 * 512))
validation_features = np.reshape(validation_features, (1500, 7 * 7 * 512))
param_grid = [
{'C': [1, 10, 100, 1000], 'kernel': ['linear']},
{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']},
]
svm_model = svm.SVC()
clf = GridSearchCV(svm_model, param_grid, cv=5)
clf.fit(train_features, train_labels) #error here for train_labels
best_model = clf.best_estimator_
print(clf.best_params_)
y_pred = best_model.predict(validation_features)
print('accuracy', accuracy_score(validation_labels, y_pred))
The shape of train_labels is (14630,3), and train_features is (14630,25088) 7 * 7 * 512=25088
how can I reshape the label and feature for svm.fit(x,y)
I think that should be an easy question, but I got stuck.
I am using PyTorch version: 1.9.0+cu102 with Convolutional Autoencoder for CIFAR-10 dataset as follows:
# Define transformations for training and test sets-
transform_train = transforms.Compose(
[
# transforms.RandomCrop(32, padding = 4),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
# transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
transform_test = transforms.Compose(
[
transforms.ToTensor(),
# transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
# Load dataset-
train_dataset = torchvision.datasets.CIFAR10(
root = './data', train = True,
download = True, transform = transform_train
)
test_dataset = torchvision.datasets.CIFAR10(
root = './data', train = False,
download = True, transform = transform_test
)
print(f"len(train_dataset) = {len(train_dataset)} & len(test_dataset) = {len(test_dataset)}")
# len(train_dataset) = 50000 & len(test_dataset) = 10000
batch_size = 64
# Create training and testing loaders-
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size = batch_size,
shuffle = True
)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size = batch_size,
shuffle = False
)
print(f"len(train_loader) = {len(train_loader)} & len(test_loader) = {len(test_loader)}")
# len(train_loader) = 782 & len(test_loader) = 157
# Sanity check-
len(train_dataset) / batch_size, len(test_dataset) / batch_size
# (781.25, 156.25)
# Get some random training images-
images, labels = next(iter(train_loader))
print(f"images.shape: {images.shape} & labels.shape: {labels.shape}")
# images.shape: torch.Size([64, 3, 32, 32]) & labels.shape: torch.Size([64])
LEARNING_RATE = 0.001
num_epochs = 20
class Reshape(nn.Module):
def __init__(self, *args):
super().__init__()
self.shape = args
def forward(self, x):
return x.view(self.shape)
class Trim(nn.Module):
def __init__(self, *args):
super().__init__()
def forward(self, x):
return x[:, :, :32, :32]
encoder = nn.Sequential(
nn.Conv2d(
in_channels = 3, out_channels = 32,
kernel_size = 3, padding = 1,
stride = 1, bias = True
),
nn.LeakyReLU(negative_slope = 0.01),
nn.Conv2d(
in_channels = 32, out_channels = 64,
kernel_size = 3, padding = 1,
stride = 2, bias = True
),
nn.LeakyReLU(negative_slope = 0.01),
nn.Conv2d(
in_channels = 64, out_channels = 64,
kernel_size = 3, padding = 1,
stride = 2, bias = True
),
nn.LeakyReLU(negative_slope = 0.01),
nn.Conv2d(
in_channels = 64, out_channels = 64,
kernel_size = 3, padding = 1,
stride = 1, bias = True
),
nn.LeakyReLU(negative_slope = 0.01),
nn.Flatten(),
nn.Linear(
in_features = 4096, out_features = 1500,
bias = True
),
nn.Linear(
in_features = 1500, out_features = 500,
bias = True
),
nn.Linear(
in_features = 500, out_features = 100,
bias = True
)
)
# Sanity check-
x = torch.rand(size = (32, 3, 32, 32))
print(f"x.shape = {x.shape}")
encoder_op = encoder(x)
print(f"encoder_op.shape = {encoder_op.shape}")
# x.shape = torch.Size([32, 3, 32, 32])
# encoder_op.shape = torch.Size([32, 100])
decoder = nn.Sequential(
nn.Linear(
in_features = 100, out_features = 500,
bias = True),
nn.Linear(
in_features = 500, out_features = 1500,
bias = True),
nn.Linear(
in_features = 1500, out_features = 4096,
bias = True),
Reshape(-1, 64, 8, 8),
nn.ConvTranspose2d(
in_channels = 64, out_channels = 64,
kernel_size = 3, stride = 1,
padding = 1, bias = True),
# output: torch.Size([32, 64, 8, 8])
nn.ConvTranspose2d(
in_channels = 64, out_channels = 64,
kernel_size = 3, stride = 2,
padding = 1, bias = True),
# output: torch.Size([32, 64, 15, 15])
nn.ConvTranspose2d(
in_channels = 64, out_channels = 32,
kernel_size = 3, stride = 2,
padding = 0, bias = True),
# torch.Size([32, 32, 31, 31])
nn.ConvTranspose2d(
in_channels = 32, out_channels = 3,
kernel_size = 3, stride = 1,
padding = 0, bias = True),
# output: torch.Size([32, 3, 33, 33])
Trim(),
# (3, 33, 33) -> (3, 32, 32)
nn.Sigmoid()
)
# Sanity check-
decoder(encoder_op).shape
# torch.Size([32, 3, 32, 32])
class AutoEncoder(nn.Module):
def __init__(self):
super().__init__()
self.encoder = encoder
self.decoder = decoder
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
# Initialize an autoencoder instance-
model = AutoEncoder()
# Move model to (GPU) device-
model.to(device)
# Specify optimizer and loss function-
optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)
loss_fn = F.mse_loss
num_epochs = 15
# Python3 lists to hold training metrics-
trainining_loss = []
validation_loss = []
def compute_epoch_loss_autoencoder(model, data_loader, loss_fn, device):
model.eval()
curr_loss, num_examples = 0., 0
with torch.no_grad():
for features, _ in data_loader:
features = features.to(device)
logits = model(features)
loss = loss_fn(logits, features, reduction='sum')
num_examples += features.size(0)
curr_loss += loss
curr_loss = curr_loss / num_examples
return curr_loss
start_time = time.time()
for epoch in range(num_epochs):
running_loss = 0.0
model.train()
for batch_idx, (features, _) in enumerate(train_loader):
features = features.to(device)
# forward and back prop-
logits = model(features) # make predictions using model
loss = loss_fn(logits, features)
optimizer.zero_grad()
# Perform backprop-
loss.backward()
# Update model parameters-
optimizer.step()
# Compute model's performance-
running_loss += loss.item() * features.size(0)
# Compute loss using training dataset-
epoch_loss = running_loss / len(train_dataset)
trainining_loss.append(epoch_loss)
# Compute loss using validation dataset-
val_loss = compute_epoch_loss_autoencoder(
model, test_loader,
loss_fn, device
)
validation_loss.append(val_loss)
print(f"Epoch = {epoch + 1}: Autoencoder train loss = {epoch_loss:.4f} & val loss = {val_loss:.4f}")
end_time = time.time()
# Get some validation images-
for img, label in test_loader:
break
img.shape, label.shape
# (torch.Size([64, 3, 32, 32]), torch.Size([64]))
img.to(device)
# Pass batch size = 64 images through encoder to get latent space representations-
model.encoder(img)
This line gives me the error:
RuntimeError Traceback (most recent call
last)
in ()
----> 1 model.encoder(img)
4 frames
/usr/local/lib/python3.7/dist-packages/torch/nn/modules/conv.py in
_conv_forward(self, input, weight, bias)
438 _pair(0), self.dilation, self.groups)
439 return F.conv2d(input, weight, bias, self.stride,
--> 440 self.padding, self.dilation, self.groups)
441
442 def forward(self, input: Tensor) -> Tensor:
RuntimeError: Input type (torch.FloatTensor) and weight type
(torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
What's going wrong?
Thanks!
I have made n-grams / doc-ids for document classification,
def create_dataset(tok_docs, vocab, n):
n_grams = []
document_ids = []
for i, doc in enumerate(tok_docs):
for n_gram in [doc[0][i:i+n] for i in range(len(doc[0]) - 1)]:
n_grams.append(n_gram)
document_ids.append(i)
return n_grams, document_ids
def create_pytorch_datasets(n_grams, doc_ids):
n_grams_tensor = torch.tensor(n_grams)
doc_ids_tensor = troch.tensor(doc_ids)
full_dataset = TensorDataset(n_grams_tensor, doc_ids_tensor)
return full_dataset
create_dataset returns pair of (n-grams, document_ids) like below:
n_grams, doc_ids = create_dataset( ... )
train_data = create_pytorch_datasets(n_grams, doc_ids)
>>> train_data[0:100]
(tensor([[2076, 517, 54, 3647, 1182, 7086],
[517, 54, 3647, 1182, 7086, 1149],
...
]),
tensor(([0, 0, 0, 0, 0, ..., 3, 3, 3]))
train_loader = DataLoader(train_data, batch_size = batch_size, shuffle = True)
The first of tensor content means n-grams and the second one does doc_id.
But as you know, by the length of documents, the amount of training data according to the label would changes.
If one document has very long length, there would be so many pairs that have its label in training data.
I think it can cause overfitting in model, because the classification model tends to classify inputs to long length documents.
So, I want to extract input batches from a uniform distribution for label (doc_ids). How can I fix it in code above?
p.s)
If there is train_data like below, I want to extract batch by the probability like that:
n-grams doc_ids
([1, 2, 3, 4], 1) ====> 0.33
([1, 3, 5, 7], 2) ====> 0.33
([2, 3, 4, 5], 3) ====> 0.33 * 0.25
([3, 5, 2, 5], 3) ====> 0.33 * 0.25
([6, 3, 4, 5], 3) ====> 0.33 * 0.25
([2, 3, 1, 5], 3) ====> 0.33 * 0.25
In pytorch you can specify a sampler or a batch_sampler to the dataloader to change how the sampling of datapoints is done.
docs on the dataloader:
https://pytorch.org/docs/stable/data.html#data-loading-order-and-sampler
documentation on the sampler: https://pytorch.org/docs/stable/data.html#torch.utils.data.Sampler
For instance, you can use the WeightedRandomSampler to specify a weight to every datapoint. The weighting can be the inverse length of the document for instance.
I would make the following modifications in the code:
def create_dataset(tok_docs, vocab, n):
n_grams = []
document_ids = []
weights = [] # << list of weights for sampling
for i, doc in enumerate(tok_docs):
for n_gram in [doc[0][i:i+n] for i in range(len(doc[0]) - 1)]:
n_grams.append(n_gram)
document_ids.append(i)
weights.append(1/len(doc[0])) # << ngrams of long documents are sampled less often
return n_grams, document_ids, weights
sampler = WeightedRandomSampler(weights, 1, replacement=True) # << create the sampler
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=False, sampler=sampler) # << includes the sampler in the dataloader
This question may have been asked but I failed to find it.
What is the simplest way to constantly get batches of data from a dataset? Is there a built-in tensorflow function to do so?
for instance:
for i in num_trains:
x_batch, y_batch = get_batch(x_train, y_train, batch_size)
sess.run(train_step, feed_dict={x:x_batch,y:y_batch})
If there is not such a built in function, how would you implement it? I tried myself but I could not figure out how I can get a new batch different from the previous ones each time I call the function.
Thanks!
You can try:
# Feed batch data
def get_batch(inputX, inputY, batch_size):
duration = len(inputX)
for i in range(0,duration//batch_size):
idx = i*batch_size
yield inputX[idx:idx+batch_size], inputY[idx:idx+batch_size]
You can also use tensorflow's dataset API as well:
dataset = tf.data.Dataset.from_tensor_slices((train_x, train_y))
dataset = dataset.batch(batch_size)
Getting the batch:
X = np.arange(100)
Y = X
batch = get_batch(X, Y, 5)
batch_x, batch_y = next(batch)
print(batch_x, batch_y)
#[0 1 2 3 4] [0 1 2 3 4]
batch_x, batch_y = next(batch)
print(batch_x, batch_y)
#[5 6 7 8 9] [5 6 7 8 9]
Typically for running over the dataset for multiple epochs, you would do:
for epoch in range(number of epoch):
for step in range(size_of_dataset//batch_size):
for x_batch, y_batch in get_batch(x_train, y_train, batch_size):
sess.run(train_step, feed_dict={x:x_batch,y:y_batch})
Using the dataset API:
dataset = tf.data.Dataset.from_tensor_slices((X, Y))
dataset = dataset.batch(5)
iterator = dataset.make_initializable_iterator()
train_x, train_y = iterator.get_next()
with tf.Session() as sess:
sess.run(iterator.initializer)
for i in range(2):
print(sess.run([train_x, train_y]))
#[array([0, 1, 2, 3, 4]), array([0, 1, 2, 3, 4])]
#[array([5, 6, 7, 8, 9]), array([5, 6, 7, 8, 9])]
My network starts to learn and looks okay on the first batch and then suddenly stops with TypeError on the second batch only! Why was it okay on the first batch then? Or why did it break after the first? Stupefying error... Here are the details:
I have built a CNN that is trying to predict 124 features for each image. The images are of size 61 x 72 pixels and the output vector of numbers are of size 124 x 1.
The images are floating point matrices with numbers between 1 and -1.
The information I'm trying to predict is in a CSV file, with each line describing an image. When I load the data for the training process I process each line and reshape them, also get the pictures the network is learning.
When I run my program, I get the following error on the second batch, however:
"TypeError: Fetch argument 2.7674865e+09 has invalid type , must be a string or Tensor. (Can not convert a float32 into a Tensor or Operation.)"
Can you please help pinpoint what the problem is? Here's my code:
import tensorflow as tf
import numpy as np
data_in=np.loadtxt(open("images.csv"), delimiter=',',dtype=np.float32);
data_out=np.loadtxt(open("outputmix-124.csv"),
delimiter=',',dtype=np.float32);
x_train = data_in[0:6000, :]
x_test = data_in[6000:10000,:]
y_train = data_out[0:6000, :]
y_test = data_out[6000:10000, :]
batch=600
epochs=10
n = x_test.shape[1] #4392
m = x_train.shape[0] #6000
d = y_test.shape[1] #124
l = y_test.shape[0] #4000
trainX= tf.placeholder(tf.float32, [batch, n], name="X")
trainY = tf.placeholder(tf.float32, [batch, d])
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def maxpool2d(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME')
def convolutional_neural_network(x):
weights = {'W_c1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
'W_c2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
'W_fc': tf.Variable(tf.random_normal([18 * 16 * 64, 1024])),
'out': tf.Variable(tf.random_normal([1024, d]))}
biases = {'b_c1': tf.Variable(tf.random_normal([32])),
'b_c2': tf.Variable(tf.random_normal([64])),
'b_fc': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([d]))}
x = tf.reshape(x, shape=[-1,61,72, 1])
conv1 = tf.nn.relu(conv2d(x, weights['W_c1']) + biases['b_c1'])
conv1 = maxpool2d(conv1)
conv2 = tf.nn.relu(conv2d(conv1, weights['W_c2']) + biases['b_c2'])
conv2 = maxpool2d(conv2)
fc = tf.reshape(conv2, [-1, 18 * 16 * 64])
fc = tf.nn.relu(tf.matmul(fc, weights['W_fc']) + biases['b_fc'])
fc = tf.nn.dropout(fc, keep_rate)
output = tf.matmul(fc, weights['out']) + biases['out']
return output
def train_neural_network(x):
prediction = convolutional_neural_network(x)
cost =tf.reduce_mean(tf.pow(prediction-trainY,2))
optimizer = tf.train.AdamOptimizer().minimize(cost)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(epochs):
epoch_loss = 0
for i in (np.linspace(0,m - batch, m / batch, dtype=np.int32)):
x = x_train[i:i + batch, :]
y = y_train[i:i + batch, :]
sess.run(optimizer, feed_dict={trainX: x, trainY: y})
cost = sess.run(cost, feed_dict={trainX: x, trainY: y})
print("Epoch=", '%04d' % (epoch + 1), "loss=", "
{:.9f}".format(cost))
epoch_loss += cost
print('Epoch', epoch, 'completed out of', epochs, 'loss:',
epoch_loss)
train_neural_network(trainX)
This is a fairly typical mistake. The problem is with the variable cost. First you assign the loss calculation tensor to it in the second line of the function train_neural_network():
cost =tf.reduce_mean(tf.pow(prediction-trainY,2))
Then when you run the training and the cost calculation, you do this, and this is where it gets messed up:
cost = sess.run(cost, feed_dict={trainX: x, trainY: y})
because you assign the value of the loss to cost, which is now a simple floating point number, instead of a Tensor. The next time around sess.run() gets a floating point number instead of a tensor as a first argument, and the error above is printed.
Use something like cost_val for storing the value of the loss and leave cost to store the reference to the tensor. You of course need to update the lines that print the value as well, so these three lines I've changed:
cost_val = sess.run(cost, feed_dict={trainX: x, trainY: y})
print("Epoch=", '%04d' % (epoch + 1), "loss=", " {:.9f}".format(cost_val))
epoch_loss += cost_val
I'm posting the full revised version here (tested code; note I've generated test data instead of loading; this is a loadable and testable example for anyone but you need to change it back to load your actual data):
import tensorflow as tf
import numpy as np
keep_rate = 0.8
#data_in=np.loadtxt(open("images.csv"), delimiter=',',dtype=np.float32);
#data_out=np.loadtxt(open("outputmix-124.csv"),
# delimiter=',',dtype=np.float32);
data_in = np.random.normal( size = ( 10000, 4392 ) )
data_out = np.random.normal( size = ( 10000, 124 ) )
x_train = data_in[0:6000, :]
x_test = data_in[6000:10000,:]
y_train = data_out[0:6000, :]
y_test = data_out[6000:10000, :]
batch=600
epochs=10
n = x_test.shape[1] #4392
m = x_train.shape[0] #6000
d = y_test.shape[1] #124
l = y_test.shape[0] #4000
trainX = tf.placeholder(tf.float32, [batch, n], name="X")
trainY = tf.placeholder(tf.float32, [batch, d])
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def maxpool2d(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME')
def convolutional_neural_network(x):
weights = {'W_c1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
'W_c2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
'W_fc': tf.Variable(tf.random_normal([18 * 16 * 64, 1024])),
'out': tf.Variable(tf.random_normal([1024, d]))}
biases = {'b_c1': tf.Variable(tf.random_normal([32])),
'b_c2': tf.Variable(tf.random_normal([64])),
'b_fc': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([d]))}
x = tf.reshape(x, shape=[-1,61,72, 1])
conv1 = tf.nn.relu(conv2d(x, weights['W_c1']) + biases['b_c1'])
conv1 = maxpool2d(conv1)
conv2 = tf.nn.relu(conv2d(conv1, weights['W_c2']) + biases['b_c2'])
conv2 = maxpool2d(conv2)
fc = tf.reshape(conv2, [-1, 18 * 16 * 64])
fc = tf.nn.relu(tf.matmul(fc, weights['W_fc']) + biases['b_fc'])
fc = tf.nn.dropout(fc, keep_rate)
output = tf.matmul(fc, weights['out']) + biases['out']
return output
def train_neural_network(x):
prediction = convolutional_neural_network(x)
cost =tf.reduce_mean(tf.pow(prediction-trainY,2))
optimizer = tf.train.AdamOptimizer().minimize(cost)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(epochs):
epoch_loss = 0
for i in (np.linspace(0,m - batch, m / batch, dtype=np.int32)):
x = x_train[i:i + batch, :]
y = y_train[i:i + batch, :]
sess.run(optimizer, feed_dict={trainX: x, trainY: y})
cost_val = sess.run(cost, feed_dict={trainX: x, trainY: y})
print("Epoch=", '%04d' % (epoch + 1), "loss=", " {:.9f}".format(cost_val))
epoch_loss += cost_val
print('Epoch', epoch, 'completed out of', epochs, 'loss:',
epoch_loss)
train_neural_network(trainX)