Get keys from interface in a generic function - node.js

I need to get types from an interface by doing something like below, but I need to do it inside a function. Is there any way to do this using typescript generics?
I need the function to pass request bodies, along with an interface specifying their types and verify that the request body has the necessary items as well as correct format.
Note: I am using tsoa with express, so any other library or technique to properly validate request bodies would be fine.
interface someInterface {
foo: string;
bar: number;
}
const testObject: someInterface = req.body;
verifyObject(testObject);
/*
ensure foo and bar are of correct type, length etc.
(I will verify types, I just need a way of
getting the interface keys in a reusable function.)
*/
function verifyObject<T>(obj: T): void {
class temp implements T {} // does not work
const keys = Object.keys(new temp());
// use keys
}

You almost have it - made a generic function, so its param will be the object of the Interface, and accessing keys of the object is, well, you know it:
function verifyObject<T>(obj: T): void {
const keys = Object.keys(obj);
}
verifyObject<someInterface>(someObj);

Related

TS: Cannot invoke an expression whose type lacks a call signature when defined dynamically, but it works

I'm still quite new to typescript, so please be gentle with me if I'm doing something with no sense for this technology!
The problem that I'm trying to solve is having a dynamic way to define how my application errors should be structured, but leaving to the users the faculty to enrich the messages.
So I tried to create this logic in a module that could be extended easily from the application, but I'm currently facing the problem:
Error:(35, 18) TS2349: Cannot invoke an expression whose type lacks a call signature. Type 'ErrorMessage' has no compatible call signatures.
What I thought it was a good idea (but please tell me if I'm wrong), was to use a register and a map to have the possibility to extend this mapping every time I want. So I created my ErrorMessage interface to be like the following:
export interface ErrorMessage {
actionMessage: string;
actionSubject: string;
originalErrorMessage?: string;
toString: () => string;
}
and a register for these, called ErrorResponseRegister, as it follows:
export enum defaultErrors {
ExceptionA = 'ExceptionA',
ExceptionB = 'ExceptionB',
}
export class ErrorResponseRegister {
private mapping: Map<string, ErrorMessage>;
constructor() {
this.mapping = new Map()
.set(defaultErrors.ExceptionA, exceptionAErrorMessage)
.set(defaultErrors.ExceptionB, exceptionBErrorMessage);
}
}
So at the end, every ErrorMessage function should look like:
export function exceptionAErrorMessage(originalErrorMessage?: string): ErrorMessage {
return {
enrichment1: "Something happened",
enrichment2: "in the application core",
originalErrorMessage: originalErrorMessage,
toString(): string {
return `${this.enrichment1} ${this.enrichment2}. Original error message: ${originalErrorMessage}`;
},
};
}
Please note I haven't used classes for this ones, as it doesn't really need to be instantiated
and I can have a bunch of them where the toString() method can vary. I just want to enforce the errors should have an enrichment1 and enrichment2 that highlight the problem in a better way for not-technical people.
So, now, back to code. When I'm trying to use the exceptionAErrorMessage statically, I can't see any problem:
console.log(exceptionAErrorMessage(originalErrorMessage).toString())
But when I try dynamically, using the map defined in the ErrorResponseRegister, something weird happens:
// In ErrorResponseRegister
public buildFor(errorType: string, originalErrorMessage?: string): Error {
const errorMessageBuilder = this.mapping.get(errorType);
if (errorMessageBuilder) {
return errorMessageBuilder(originalErrorMessage).toString();
}
return "undefined - do something else";
}
The code works as expected, the error returned is in the right format, so the toString function is executed correctly.
BUT, the following error appears in the IDE:
Error:(32, 18) TS2349: Cannot invoke an expression whose type lacks a call signature. Type 'ErrorMessage' has no compatible call signatures.
The line that causes the problem is
errorMessageBuilder(originalPosErrorMessage).toString()
Can someone help me to understand what I'm doing wrong?
It looks like your problem is you've mistyped mapping... it doesn't hold ErrorMessage values; it holds (x?: string)=>ErrorMessage values:
private mapping: Map<string, (x?: string) => ErrorMessage>;
What's unfortunate is that you initialize this variable via new Map().set(...) instead of the using an iterable constructor argument.
The former returns a Map<any, any> which is trivially assignable to mapping despite the mistyping. That is, you ran smack into this known issue where the standard library's typings for the no-argument Map constructor signature produces Map<any, any> which suppresses all kinds of otherwise useful error messages. Perhaps that will be fixed one day, but for now I'd suggest instead that you use the iterable constructor argument, whose type signature declaration will infer reasonable types for the keys/values:
constructor() {
this.mapping = new Map([
[defaultErrors.ExceptionA, exceptionAErrorMessage],
[defaultErrors.ExceptionB, exceptionBErrorMessage]
]); // inferred as Map<defaultErrors, (orig?: string)=>ErrorMessage>
}
If you had done so, it would have flagged the assignment as an error with your original typing for mapping (e.g., Type 'Map<defaultErrors, (originalErrorMessage?: string | undefined) => ErrorMessage>' is not assignable to type 'Map<string, ErrorMessage>'.) Oh well!
Once you make those changes, things should behave more reasonably for you. Hope that helps; good luck!
Link to code

How do I improve this object design in Typescript?

I have created a class in Typescript that implements a simple stream (FRP). Now I want to extend it with client side functionality (streams of events). To illustrate my problem, here is some pseudo-code:
class Stream<T> {
map<U>(f: (value: T) => U): Stream<U> {
// Creates a new Stream instance that maps the values.
}
// Quite a few other functions that return new instances.
}
This class can be used both on the server and on the client. For the client side, I created a class that extends this one:
class ClientStream<T> extends Stream<T> {
watch(events: string, selector: string): Stream<Event> {
// Creates a new ClientStream instance
}
}
Now the ClientStream class knows about map but the Stream class doesn't know about watch. To circumvent this, functions call a factory method.
protected create<U>(.....): Stream<U> {
return new Stream<U>(.....)
}
The ClientStream class overrides this function to return ClientStream instances. However, the compiler complains that ClientStream.map returns a Stream, not a ClientStream. That can be 'solved' using a cast, but besides being ugly it prevents chaining.
Example code that exhibits this problem:
class Stream {
protected create(): Stream {
return new Stream()
}
map() {
return this.create()
}
}
class ClientStream extends Stream {
protected create(): ClientStream {
return new ClientStream()
}
watch() {
return this.create()
}
}
let s = new ClientStream().map().watch()
This does not compile because according to the compiler, the stream returned from map is not a ClientStream: error TS2339: Property 'watch' does not exist on type 'Stream'.
I don't really like this pattern, but I have no other solution that is more elegant. Things I've thought about:
Use composition (decorator). Not really an option given the number of methods I would have to proxy through. And I want to be able to add methods to Stream later without having to worry about ClientStream.
Mix Stream into ClientStream. More or less the same problem, ClientStream has to know the signatures of the functions that are going to be mixed in (or not? Please tell).
Merge these classes into one. This is a last resort, the watch function has no business being on the server.
Do you have a better (more elegant) solution? If you have an idea that gets closer to a more functional style, I'd be happy to hear about it. Thanks!
What you're trying to do is called F-bounded polymorphism.
In TypeScript this is done via the this keyword. Take a look at Typescript's documentation for polymorphic this types. If you follow the documentation, you should be able to implement what you want :-)
Actually, just make sure that you're returning this in your member methods and you should be fine!

Setting types of parsed values in Antlr

I have a rule that looks like this:
INTEGER : [0-9]+;
myFields : uno=INTEGER COMMA dos=INTEGER
Right now to access uno I need to code:
Integer i = Integer.parseInt(myFields.uno.getText())
It would be much cleaner if I could tell antler to do that conversion for me; then I would just need to code:
Integer i = myFields.uno
What are my options?
You could write the code as action, but it would still be explicit conversion (eventually). The parser (like every parser) parses the text and then it's up to "parsing events" (achieved by listener or visitor or actions in ANTLR4) to create meaningful structures/objects.
Of course you could extend some of the generated or built-in classes and then get the type directly, but as mentioned before, at some point you'll always need to convert text to some type needed.
A standard way of handling custom operations on tokens is to embed them in a custom token class:
public class MyToken extends CommonToken {
....
public Integer getInt() {
return Integer.parseInt(getText()); // TODO: error handling
}
}
Also create
public class MyTokenFactory extends TokenFactory { .... }
to source the custom tokens. Add the factory to the lexer using Lexer#setTokenFactory().
Within the custom TokenFactory, override the method
Symbol create(int type, String text); // (typically override both factory methods)
to construct and return a new MyToken.
Given that the signature includes the target token type type, custom type-specific token subclasses could be returned, each with their own custom methods.
Couple of issues with this, though. First, in practice, it is not typically needed: the assignment var is statically typed, so as in the the OP example,
options { TokenLabelType = "MyToken"; }
Integer i = myFields.uno.getInt(); // no cast required
If Integer is desired & expected, use getInt(). If Boolean ....
Second, ANTLR options allows setting a TokenLabelType to preclude the requirement to manually cast custom tokens. Use of only one token label type is supported. So, to use multiple token types, manual casting is required.

How to implement inheritance in Node.JS

How do we use 'inheritance' in Node.JS? I heard that prototype is similar to interfaces in java. But I have no idea how to use it!
Although there are various ways of performing inheritance and OO in javascript, in Node.js you would typically use the built in util.inherits function to create a constructor which inherits from another.
See http://book.mixu.net/ch6.html for a good discussion on this subject.
for example:
var util = require("util");
var events = require("events");
function MyOwnClass() {
// ... your code.
}
util.inherits(MyOwnClass, events.EventEmitter);
Creating an object constructor in pure JS:
They're just functions like any other JS function but invoked with the new keyword.
function Constructor(){ //constructors are typically capitalized
this.public = function(){ alert(private); }
var private = "Untouchable outside of this func scope.";
}
Constructor.static = function(){ alert('Callable as "Constructor.static()"'); }
var instance = new Constructor();
Inheritance:
function SubConstructor(){
this.anotherMethod(){ alert('nothing special'); }
}
function SubConstructor.prototype = new Constructor();
var instance = new SubConstructor();
instance.public(); //alerts that private string
The key difference is that prototypal inheritance comes from objects, rather than the things that build them.
One disadvantage is that there's no pretty way to write something that makes inheritance of instance vars like private possible.
The whopping gigantor mega-advantage, however, is that we can mess with the prototype without impacting the super constructor, changing a method or property for every object even after they've been built. This is rarely done in practice in higher-level code since it would make for an awfully confusing API but it can be handy for under-the-hood type stuff where you might want to share a changing value across a set of instances without just making it global.
The reason we get this post-instantiated behavior is because JS inheritance actually operates on a lookup process where any method call runs up the chain of instances and their constructor prototype properties until it finds the method called or quits. This can actually get slow if you go absolutely insane with cascading inheritance (which is widely regarded as an anti-pattern anyway).
I don't actually hit prototype specifically for inheritacne a lot myself, instead preferring to build up objects via a more composited approach but it's very handy when you need it and offers a lot of less obvious utility. For instance when you have an object that would be useful to you if only one property were different, but you don't want to touch the original.
var originInstance = {
originValue:'only on origin',
theOneProperty:'that would make this old object useful if it were different'
}
function Pseudoclone(){
this.theOneProperty = "which is now this value";
}
Pseudoclone.prototype = originInstance;
var newInstance = new Psuedoclone();
//accesses originInstance.originValue but its own theOneProperty
There are more modern convenience methods like Object.create but only function constructors give you the option to encapsulate private/instance vars so I tend to favor them since 9 times out of 10 anything not requiring encapsulation will just be an object literal anyway.
Overriding and Call Object Order:
( function Constructor(){
var private = "public referencing private";
this.myMethod = function(){ alert(private); }
} ).prototype = { myMethod:function(){ alert('prototype'); };
var instance = new Constructor();
instance.myMethod = function(){ alert(private); }
instance.myMethod();//"undefined"
Note: the parens around the constructor allow it to be defined and evaluated in one spot so I could treat it like an object on the same line.
myMethod is alerting "undefined" because an externally overwritten method is defined outside of the constructor's closure which is what effective makes internal vars private-like. So you can replace the method but you won't have access to what it did.
Now let's do some commenting.
( function Constructor(){
var private = "public referencing private";
this.myMethod = function(){ alert(private); }
} ).prototype = { myMethod:function(){ alert('prototype'); };
var instance = new Constructor();
//instance.myMethod = function(){ alert(private); }
instance.myMethod();//"public referencing private"
and...
( function Constructor(){
var private = "public referencing private";
//this.myMethod = function(){ alert(private); }
} ).prototype = { myMethod:function(){ alert('prototype'); };
var instance = new Constructor();
//instance.myMethod = function(){ alert(private); }
instance.myMethod();//"prototype"
Note that prototype methods also don't have access to that internal private var for the same reason. It's all about whether something was defined in the constructor itself. Note that params passed to the constructor will also effectively be private instance vars which can be handy for doing things like overriding a set of default options.
Couple More Details
It's actually not necessary to use parens when invoking with new unless you have required parameters but I tend to leave them in out of habit (it works to think of them as functions that fire and then leave an object representing the scope of that firing behind) and figured it would be less alien to a Java dev than new Constructor;
Also, with any constructor that requires params, I like to add default values internally with something like:
var param = param || '';
That way you can pass the constructor into convenience methods like Node's util.inherit without undefined values breaking things for you.
Params are also effectively private persistent instance vars just like any var defined in a constructor.
Oh and object literals (objects defined with { key:'value' }) are probably best thought of as roughly equivalent to this:
var instance = new Object();
instance.key = 'value';
With a little help from Coffeescript, we can achieve it much easier.
For e.g.: to extend a class:
class Animal
constructor: (#name) ->
alive: ->
false
class Parrot extends Animal
constructor: ->
super("Parrot")
dead: ->
not #alive()
Static property:
class Animal
#find: (name) ->
Animal.find("Parrot")
Instance property:
class Animal
price: 5
sell: (customer) ->
animal = new Animal
animal.sell(new Customer)
I just take the sample code Classes in CoffeeScript. You can learn more about CoffeeScript at its official site: http://coffeescript.org/

Generics and Anonymous types

I have a function,
public static IPagedResponse<T> GetPagedResponse<T, TAnon>(
this IQueryable<TAnon> query,
QueryableRequestMessage request)
where T : class
{
//...
}
I'm trying to pass query as an IQueryable of an anonymous type.
var query = _repository.All.Select(
i => new //anon type
{
i.Id,
i.Name,
}
);
var result = query.GetPagedResponse<EftInterfaceDto, ??????>(request);
The issue is I don't know what to put in place of ??????? It can't seem to infer it. And any combinations using .GetType() or typeof() I have tried, failed.
I tried changing the function to be IQueryable<dynamic> but that resulted in other errors, about dynamic not being allowed in Expression trees.
HACK:
I can make it work if I change my function to this:
public static IPagedResponse<T> GetPagedResponse<T, TAnon>(
this IQueryable<TAnon> query,
QueryableRequestMessage request,
T typeSample)
where T : class
{
//...
}
And then pass in an instance of T
var result = query.GetPagedResponse(request, new SomeClassOfT());
This way, I can use type inference to determine the anonymous type TAnon, and don't need to be explicit in the call to the generic (no <types> required).
However, I don't want to do this, as it's clearly not clear what I'm doing.

Resources