Tracking a counter value in application insights - azure

I'm trying to use application insights to keep track of a counter of number of active streams in my application. I have 2 goals to achieve:
Show the current (or at least recent) number of active streams in a dashboard
Activate a kind of warning if the number exceeds a certain limit.
These streams can be quite long lived, and sometimes brief. So the number can sometimes change say 100 times a second, and sometimes remain unchanged for many hours.
I have been trying to track this active streams count as an application insights metric.
I'm incrementing a counter in my application when a new stream opens, and decrementing when one closes. On each change I use the telemetry client something like this
var myMetric = myTelemetryClient.GetMetric("Metricname");
myMetric.TrackValue(myCount);
When I query my metric values with Kusto, I see that because of these clusters of activity within a 10 sec period, my metric values get aggregated. For the purposes of my alarm, I can live with that, as I can look at the max value of the aggregate. But I can't present a dashboard of the number of active streams, as I have no way of knowing the number of active streams between my measurement points. I know the min value, max and average, but I don't know the last value of the aggregate period, and since it can be somewhere between 0 and 1000, its no help.
So the solution I have doesn't serve my needs, I thought of a couple of changes:
Adding a scheduled pump to my counter component, which will send the current counter value, once every say 5 minutes. But I don't like that I then have to add a thread for each of these counters.
Adding a timer to send the current value once, 5 minutes after the last change. Countdown gets reset each time the counter changes. This has the same problem as above, and does an excessive amount of work to reset the counter when it could be changing thousands of times a second.
In the end, I don't think my needs are all that exotic, so I wonder if I'm using app insights incorrectly.
Is there some way I can change the metric's behavior to suit my purposes? I appreciate that it's pre-aggregating before sending data in order to reduce ingest costs, but it's preventing me from solving a simple problem.
Is a metric even the right way to do this? Are there alternative approaches within app insights?

You can use TrackMetric instead of the GetMetric ceremony to track individual values withouth aggregation. From the docs:
Microsoft.ApplicationInsights.TelemetryClient.TrackMetric is not the preferred method for sending metrics. Metrics should always be pre-aggregated across a time period before being sent. Use one of the GetMetric(..) overloads to get a metric object for accessing SDK pre-aggregation capabilities. If you are implementing your own pre-aggregation logic, you can use the TrackMetric() method to send the resulting aggregates.
But you can also use events as described next:
If your application requires sending a separate telemetry item at every occasion without aggregation across time, you likely have a use case for event telemetry; see TelemetryClient.TrackEvent (Microsoft.ApplicationInsights.DataContracts.EventTelemetry).

Related

Running a repetitive task in Node.js for each row in a postgres table on a different interval for each row

What would be a good approach to running a repetitive task for each row in a large postgres db table on a different per row interval in Node.js.
To give you some more context, here's a quick description of the application:
It's a chat based customer support app.
It consists of teams, which can be either a client team or a support team. Teams have users, which can be either client users or support users.
Client users send messages to a support team and wait for one of that team's users to answer their question.
When there's an unanswered client message waiting for a response, every agent for the receiving support team will receive a notification every n seconds (n being set on a per-team basis by the team admin).
So this task needs to infinitely loop through the rows in the teams table and send notifications if:
The team has messages waiting to be answered.
N seconds have passed since the last notification was sent (N being the number of seconds set by the team admin).
There might be a better approach to this condition altogether.
So my questions are:
What is an efficient way to infinitely loop through a postgres table with no upper limit on the number rows?
Should I load 1 row at a time? Several at a time?
What would be a good way to do this in Node?
I'm using Knex. Does Knex provide a mechanism for lazy loading a table and iterating through the rows?
A) Running a repetitive task via node can be done via a the js built-in function 'setInterval'.
// run the intervalFnc() every 5 seconds
const timerId = setTimeout(intervalFnc, 5000);
function intervalFnc() { console.log("Hello"); }
// to quit running it:
clearTimeout(timerId);
Then your interval function can do the actual work. An alternative would be to use cron (linux), or some OS process scheduler to trigger the function. I would use this method if you want to do it every minute, and a cron job if you want to do it every hour (in between these times becomes more debatable).
B) An efficient way...
B-1) Retrieving a block of records from a DB will be more efficient than one at a time. Knex has .offset and .limit clauses to choose a group of records to retrieve. A sample from the knex doc:
knex.select('*').from('users').limit(10).offset(30)
B-2) Database indexed access is important for performance if your tables are very large. I would recommend including an status flag field in your table to note which records are 'in-process', and also include a "next-review-timestamp" field with both fields being both indexed. Retrieve the records that have status_flag='in-process' AND next_review_timestamp <= now(). Sample:
knex('users').where('status_flag', 'in-process').whereRaw('next_review_timestamp <= now()')
Hope this helps!

Azure Function monitor alert where execution count < 1 never triggered

I have an Azure Function App with Azure Functions that I individually want to monitor with the following rule: If an Azure Function didn't execute for N amount of minutes, send out an email/notification.
I am wondering if this is possible with the Application Insights Alerts, which does provide signal logic for the count on an individual Azure Function basis. But this count is never 0, in the graphs it appears that any count < 0 is not seen as a number. It displays as --, as you can see in the graph for my test function below:
testfunction chart (don't have enough reputation to post images)
The peak on the chart is seen as a 3, but if I use the condition "Whenever the testfunction Count is Less than 1" then the alert is never triggered.
Changing the aggregation granularity doesn't really do much, since the signal logic doesn't ever seem to record a count of 0, or any count smaller than 1.
There are lots of (slightly) more inconvenient ways to do this type of monitoring, but it seemed very possible with the nice built-in Azure Application Insights Alerts and I'd like to use that if at all possible.
Am I trying to misuse Application Insights Alerts or is there something obvious that I'm not getting? I would think it should be possible to have monitoring rules based on a lack of executions.
you might have to do this with log/query alerts instead. If you're doing metric based alerts, some of those don't send 0's as data. so if nothing happened during a time range, there's no 0's to alert on, since nothing is submitting 0, 0, 0, 0.
instead, you'd create alerts based on queries: https://learn.microsoft.com/en-us/azure/azure-monitor/platform/alerts-unified-log
the doc has this exact scenario listed:
In some cases, you may want to create an alert in the absence of an event.
For example, a process may log regular events to indicate that it's working properly. If it doesn't log one of these events within a particular time period, then an alert should be created. In this case, you would set the threshold to less than 1. [emphasis added, this is your scenario, correct]?
Example of Number of Records type log alert
Consider a scenario where you want to know when your web-based App gives a response to users with code 500 (that is) Internal Server Error. You would create an alert rule with the following details:
Query: requests | where resultCode == "500"
Time period: 30 minutes
Alert frequency: five minutes
Threshold value: Greater than 0
in that example the query would end up being something like requests | where timespan < ago(30m) | where resultCode == "500" because of the time period set. (the query itself can then filter that time range/result set down however you want)
so for yours, you'd probably just do requests with no where condition at all, and whatever time period and frequency you have, and "less than one" as the threshold.
you could make much more complicated queries as well, to filter out test data, etc.
one thing to watch out for is that I believe log alerts will fire an alert every time the frequency elapses. so if you had a requests < 1 alert set up for every 5 minutes, and your function had no calls for 2 hours, the alert is going to fire every 5 minutes, sending you 40 emails or whatever. maybe you want that :)

Using Timer for batch operations

I'm new to using Micrometer and am trying to see if there's a way to use a Timer that would also include a count of the number of items in a batch processing scenario. Since I'm processing the batch with Java streams, I didn't see an obvious way to record the timer for each item processed, so I was looking for a way to set a batch size attribute. One way I think that could work is to use the FunctionTimer from https://micrometer.io/docs/concepts#_function_tracking_timers, but I believe that requires the app to maintain a persistent monotonically increasing set of values for the total count and total time.
Is there a simpler way this can be done? Ultimately this data will be fed to New Relic. I've also tried setting tags for the batch size, but those seem to be reported as strings so I can't do any type of aggregation on the values.
Thanks!
A timer is intended for measuring an action and at a minimum results in two measurements: a count and a duration.
So a timer will work perfectly for your batch processing. In the the java stream, a peek operation might be a good place to put a timer.
If you were about to process 20 elements and you were just measuring the time for all 20 elements, you would need to create a new Counter for measuring the batch size. You could them divide the timer's total duration against your counter to get a per-item duration or divide it against the timer's total count to get a per-batch duration.
Feel free to add code snippets if you would like feedback for those.

Getting Multiple Last Price Quotes from Interactive Brokers's API

I have a question regarding the Python API of Interactive Brokers.
Can multiple asset and stock contracts be passed into reqMktData() function and obtain the last prices? (I can set the snapshots = TRUE in reqMktData to get the last price. You can assume that I have subscribed to the appropriate data services.)
To put things in perspective, this is what I am trying to do:
1) Call reqMktData, get last prices for multiple assets.
2) Feed the data into my prediction engine, and do something
3) Go to step 1.
When I contacted Interactive Brokers, they said:
"Only one contract can be passed to reqMktData() at one time, so there is no bulk request feature in requesting real time data."
Obviously one way to get around this is to do a loop but this is too slow. Another way to do this is through multithreading but this is a lot of work plus I can't afford the extra expense of a new computer. I am not interested in either one.
Any suggestions?
You can only specify 1 contract in each reqMktData call. There is no choice but to use a loop of some type. The speed shouldn't be an issue as you can make up to 50 requests per second, maybe even more for snapshots.
The speed issue could be that you want too much data (> 50/s) or you're using an old version of the IB python api, check in connection.py for lock.acquire, I've deleted all of them. Also, if there has been no trade for >10 seconds, IB will wait for a trade before sending a snapshot. Test with active symbols.
However, what you should do is request live streaming data by setting snapshot to false and just keep track of the last price in the stream. You can stream up to 100 tickers with the default minimums. You keep them separate by using unique ticker ids.

Spark streaming - waiting for data for window aggregations?

I have data in the format { host | metric | value | time-stamp }. We have hosts all around the world reporting metrics.
I'm a little confused about using window operations (say, 1 hour) to process data like this.
Can I tell my window when to start, or does it just start when the application starts? I want to ensure I'm aggregating all data from hour 11 of the day, for example. If my window starts at 10:50, I'll just get 10:50-11:50 and miss 10 minutes.
Even if the window is perfect, data may arrive late.
How do people handle this kind of issue? Do they make windows far bigger than needed and just grab the data they care about on every batch cycle (kind of sliding)?
In the past, I worked on a large-scale IoT platform and solved that problem by considering that the windows were only partial calculations. I modeled the backend (Cassandra) to receive more than 1 record for each window. The actual value of any given window would be the addition of all -potentially partial- records found for that window.
So, a perfect window would be 1 record, a split window would be 2 records, late-arrivals are naturally supported but only accepted up to a certain 'age' threshold. Reconciliation was done at read time. As this platform was orders of magnitude heavier in terms of writes vs reads, it made for a good compromise.
After speaking with people in depth on MapR forums, the consensus seems to be that hourly and daily aggregations should not be done in a stream, but rather in a separate batch job once the data is ready.
When doing streaming you should stick to small batches with windows that are relatively small multiples of the streaming interval. Sliding windows can be useful for, say, trends over the last 50 batches. Using them for tasks as large as an hour or a day doesn't seem sensible though.
Also, I don't believe you can tell your batches when to start/stop, etc.

Resources