How to perform parallel computation on Spark Dataframe by row? - python-3.x

I have a collection of 300 000 points and I would like to compute the distance between them.
id x y
0 0 1 0
1 1      28 76
…
Thus I do a Cartesian product between those points and I filter such as I keep only one combination of points. Indeed for my purpose distance between points (0, 1) is same as (1,0)
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType
import math
#udf(returnType=IntegerType())
def compute_distance(x1,y1, x2,y2):
return math.square(math.pow(x1-x2) + math.pow(y1-y2))
columns = ['id','x', 'y']
data = [(0, 1, 0), (1, 28,76), (2, 33,42)]
spark = SparkSession\
.builder \
.appName('distance computation') \
.config('spark.sql.execution.arrow.pyspark.enabled', 'true') \
.config('spark.executor.memory', '2g') \
.master('local[20]') \
.getOrCreate()
rdd = spark.sparkContext.parallelize(data)
df = rdd.toDF(columns)
result = df.alias('a')\
.join(df.alias('b'),
F.array(*['a.id']) < F.array(*['b.id']))\
.withColumn('distance', compute_distance(F.col('a.x'), F.col('a.y'), F.col('b.x'), F.col('b.y')))
result.write.parquet('distance-between-points')
While that seems to work, the CPU usage for my latest task (parquet at NativeMethodAccessorImpl.java:0) did not go above 100%. Also, it took and a day to complete.
I would like to know if the withColumn operation is performed on multiple executors in order to achieve parallelism?
Is there a way to split the data in order to compute distance by batch and to store the result in one or multiple Parquet files?
Thanks for your insight.

I would like to know if the withColumn operation is performed on multiple executor in order to achieve parallelism ?
Yes, assuming a correctly configured cluster, the dataframe will be partitioned across your cluster and the executors will work through the partitions in parallel running your UDF.
Is there a way to split the data in order to compute distance by batch in // and to store them into one or multiples parquet files ?
By default, the resulting dataframe will be partitioned across the cluster and written out as one Parquet file per partition. You can change that by re-partioning if required, but that will result in a shuffle and take longer.
I recommend the 'Level of Parallelism' section in the Learning Spark book for further reading.

Related

Why is UDF not running in parallel on available executors?

I have a tiny spark Dataframe that essentially pushes a string into a UDF. I'm expecting, because of .repartition(3), which is the same length as targets, for the processing inside run_sequential to be applied on available executors - i.e. applied to 3 different executors.
The issue is that only 1 executor is used. How can I parallelise this processing to force my pyspark script to assign each element of target to a different executor?
import pandas as pd
import pyspark.sql.functions as F
def run_parallel(config):
def run_sequential(target):
#process with target variable
pass
return F.udf(run_sequential)
targets = ["target_1", "target_2", "target_3"]
config = {}
pdf = spark.createDataFrame(pd.DataFrame({"targets": targets})).repartition(3)
pdf.withColumn(
"apply_udf", run_training_parallel(config)("targets")
).collect()
The issue here is that repartitioning a DataFrame does not guarantee that all the created partitions will be of the same size. With such a small number of records there is a pretty high chance that some of them will map into the same partition. Spark is not meant to process such small datasets and its algorithms are tailored to work efficiently with large amounts of data - if your dataset has 3 million records and you split it in 3 partitions of approximately 1 million records each, a difference of several records per partition will be insignificant in most cases. This is obviously not the case when repartitioning 3 records.
You can use df.rdd.glom().map(len).collect() to examine the size of the partitions before and after repartitioning to see how the distribution changes.
$ pyspark --master "local[3]"
...
>>> pdf = spark.createDataFrame([("target_1",), ("target_2",), ("target_3",)]).toDF("targets")
>>> pdf.rdd.glom().map(len).collect()
[1, 1, 1]
>>> pdf.repartition(3).rdd.glom().map(len).collect()
[0, 2, 1]
As you can see, the resulting partitioning is uneven and the first partition in my case is actually empty. The irony here is that the original dataframe has the desired property and that one is getting destroyed by repartition().
While your particular case is not what Spark typically targets, it is still possible to forcefully distribute three records in three partitions. All you need to do is to provide an explicit partition key. RDDs have the zipWithIndex() method that extends each record with its ID. The ID is the perfect partition key since its value starts with 0 and increases by 1.
>>> new_df = (pdf
.coalesce(1) # not part of the solution - see below
.rdd # Convert to RDD
.zipWithIndex() # Append ID to each record
.map(lambda x: (x[1], x[0])) # Make record ID come first
.partitionBy(3) # Repartition
.map(lambda x: x[1]) # Remove record ID
.toDF()) # Turn back into a dataframe
>>> new_df.rdd.glom().map(len).collect()
[1, 1, 1]
In the above code, coalesce(1) is added only to demonstrate that the final partitioning is not influenced by the fact that pdf initially has one record in each partition.
A DataFrame-only solution is to first coalesce pdf to a single partition and then use repartition(3). With no partitioning column(s) provided, DataFrame.repartition() uses the round-robin partitioner and hence the desired partitioning will be achieved. You cannot simply do pdf.coalesce(1).repartition(3) since Catalyst (the Spark query optimisation engine) optimises out the coalesce operation, so a partitioning-dependent operation must be inserted in between. Adding a column containing F.monotonically_increasing_id() is a good candidate for such an operation.
>>> new_df = (pdf
.coalesce(1)
.withColumn("id", F.monotonically_increasing_id())
.repartition(3))
>>> new_df.rdd.glom().map(len).collect()
[1, 1, 1]
Note that, unlike in the RDD-based solution, coalesce(1) is required as part of the solution.

Why is Pandas-API-on-Spark's apply on groups a way slower than pyspark API?

I'm having strange performance results when comparing the two APIs in pyspark 3.2.1 that provide ability to run pandas UDF on grouped results of Spark Dataframe:
df.groupBy().applyInPandas()
ps_df.groupby().apply() - a new way of apply introduced in Pandas-API-on-Spark AKA Koalas
First I run the following input generator code in local spark mode (Spark 3.2.1):
import pyspark.sql.types as types
from pyspark.sql.functions import col
from pyspark.sql import SparkSession
import pyspark.pandas as ps
spark = SparkSession.builder \
.config("spark.sql.execution.arrow.pyspark.enabled", True) \
.getOrCreate()
ps.set_option("compute.default_index_type", "distributed")
spark.range(1000000).withColumn('group', (col('id') / 10).cast('int')) \
.write.parquet('/tmp/sample_input', mode='overwrite')
Then I test the applyInPandas:
def getsum(pdf):
pdf['sum_in_group'] = pdf['id'].sum()
return pdf
df = spark.read.parquet(f'/tmp/sample_input')
output_schema = types.StructType(
df.schema.fields + [types.StructField('sum_in_group', types.FloatType())]
)
df.groupBy('group').applyInPandas(getsum, schema=output_schema) \
.write.parquet('/tmp/schematest', mode='overwrite')
And the code executes under 30 seconds (on i7-9750H CPU)
Then, I try the new API and - while I really appreciate how nice the code looks like:
def getsum(pdf) -> ps.DataFrame["id": int, "group": int, "sum_in_group": int]:
pdf['sum_in_group'] = pdf['id'].sum()
return pdf
df = ps.read_parquet(f'/tmp/sample_input')
df.groupby('group').apply(getsum) \
.to_parquet('/tmp/schematest', mode='overwrite')
... every time the execution time is at least 1m 40s on the same CPU, so more than 3x slower for this simple operation.
I am aware that adding sum_in_group can be done way more efficient with no panadas involvement, but this is just to provide a small minimal example. Any other operations is also at least 3 times slower.
Do you know what would be the reason to this slowdown? Maybe I'm lacking some context parameter that would make these execute in the similar time?

rdd of DataFrame could not change partition number in Spark Structured Streaming python

I have following code of pyspark in Spark Structured Streaming to get dataFrame from Redis
def process(stream_batch, batch_id):
stream_batch.persist()
length = stream_batch.count()
record_rdd = stream_batch.rdd.map(lambda x: b_to_ndarray(x['data']))
# b_to_ndarray is a single thread method to convert bytes in Redis to ndarray
record_rdd = record_rdd.coalesce(4) # does not work
print(record_rdd.getNumPartitions()) # output 1
# some other code
Why? How to fix it? The code in main is
loadedDf = spark.readStream.format('redis')...
query = loadedDf.writeStream \
.foreachBatch(process).start()
query.awaitTermination()
Since the partitionNum is 1 at the first place, coalesce operation does not allow to generate fewer partitions. So no matter how you call it, it would be 1 partition. Unless you use repartition

pyspark df.count() taking a very long time (or not working at all)

I have the following code that is simply doing some joins and then outputting the data;
from pyspark.sql.functions import udf, struct
from pyspark import SparkContext
from pyspark.sql import SparkSession
from pyspark import SparkConf
from pyspark.sql.functions import broadcast
conf = SparkConf()
conf.set('spark.logConf', 'true')
spark = SparkSession \
.builder \
.config(conf=conf) \
.appName("Generate Parameters") \
.getOrCreate()
spark.sparkContext.setLogLevel("OFF")
df1 = spark.read.parquet("/location/mydata")
df1 = df1.select([c for c in df1.columns if c in ['sender','receiver','ccc,'cc','pr']])
df2 = spark.read.csv("/location/mydata2")
cond1 = [(df1.sender == df2._c1) | (df1.receiver == df2._c1)]
df3 = df1.join(broadcast(df2), cond1)
df3 = df3.select([c for c in df3.columns if c in['sender','receiver','ccc','cc','pr']])
df1 is 1,862,412,799 rows and df2 is 8679 rows
when I then call;
df3.count()
It just seems to sit there with the following
[Stage 33:> (0 + 200) / 200]
Assumptions for this answer:
df1 is the dataframe containing 1,862,412,799 rows.
df2 is the dataframe containing 8679 rows.
df1.count() returns a value quickly (as per your comment)
There may be three areas where the slowdown is occurring:
The imbalance of data sizes (1,862,412,799 vs 8679):
Although spark is amazing at handling large quantities of data, it doesn't deal well with very small sets. If not specifically set, Spark attempts to partition your data into multiple parts and on small files this can be excessively high in comparison to the actual amount of data each part has. I recommend trying to use the following and see if it improves speed.
df2 = spark.read.csv("/location/mydata2")
df2 = df2.repartition(2)
Note: The number 2 here is just an estimated number, based on how many partitions would suit the amount of rows that are in that set.
Broadcast Cost:
The delay in the count may be due to the actual broadcast step. Your data is being saved and copied to every node within your cluster before the join, this all happening together once count() is called. Depending on your infrastructure, this could take some time. If the above repartition doesn't work, try removing the broadcast call. If that ends up being the delay, it may be good to confirm that there are no bottlenecks within your cluster or if it's necessary.
Unexpected Merge Explosion
I do not imply that this is an issue, but it is always good to check that the merge condition you have set is not creating unexpected duplicates. It is a possibility that this may be happening and creating the slow down you are experiencing when actioning the processing of df3.

In Spark, caching a DataFrame influences execution time of previous stages?

I am running a Spark (2.0.1) job with multiple stages. I noticed that when I insert a cache() in one of later stages it changes the execution time of earlier stages. Why? I've never encountered such a case in literature when reading about caching().
Here is my DAG with cache():
And here is my DAG without cache(). All remaining code is the same.
I have a cache() after a sort merge join in Stage10. If the cache() is used in Stage10 then Stage8 is nearly twice longer (20 min vs 11 min) then if there were no cache() in Stage10. Why?
My Stage8 contains two broadcast joins with small DataFrames and a shuffle on a large DataFrame in preparation for the merge join. Stages8 and 9 are independent and operate on two different DataFrames.
Let me know if you need more details to answer this question.
UPDATE 8/2/1018
Here are the details of my Spark script:
I am running my job on a cluster via spark-submit. Here is my spark session.
val spark = SparkSession.builder
.appName("myJob")
.config("spark.executor.cores", 5)
.config("spark.driver.memory", "300g")
.config("spark.executor.memory", "15g")
.getOrCreate()
This creates a job with 21 executors with 5 cpu each.
Load 4 DataFrames from parquet files:
val dfT = spark.read.format("parquet").load(filePath1) // 3 Tb in 3185 partitions
val dfO = spark.read.format("parquet").load(filePath2) // ~ 700 Mb
val dfF = spark.read.format("parquet").load(filePath3) // ~ 800 Mb
val dfP = spark.read.format("parquet").load(filePath4) // 38 Gb
Preprocessing on each of the DataFrames is composed of column selection and dropDuplicates and possible filter like this:
val dfT1 = dfT.filter(...)
val dfO1 = dfO.select(columnsToSelect2).dropDuplicates(Array("someColumn2"))
val dfF1 = dfF.select(columnsToSelect3).dropDuplicates(Array("someColumn3"))
val dfP1 = dfP.select(columnsToSelect4).dropDuplicates(Array("someColumn4"))
Then I left-broadcast-join together first three DataFrames:
val dfTO = dfT1.join(broadcast(dfO1), Seq("someColumn5"), "left_outer")
val dfTOF = dfTO.join(broadcast(dfF1), Seq("someColumn6"), "left_outer")
Since the dfP1 is large I need to do a merge join, I can't afford it to do it now. I need to limit the size of dfTOF first. To do that I add a new timestamp column which is a withColumn with a UDF which transforms a string into a timestamp
val dfTOF1 = dfTOF.withColumn("TransactionTimestamp", myStringToTimestampUDF)
Next I filter on a new timestamp column:
val dfTrain = dfTOF1.filter(dfTOF1("TransactionTimestamp").between("2016-01-01 00:00:00+000", "2016-05-30 00:00:00+000"))
Now I am joining the last DataFrame:
val dfTrain2 = dfTrain.join(dfP1, Seq("someColumn7"), "left_outer")
And lastly the column selection with a cache() that is puzzling me.
val dfTrain3 = dfTrain.select("columnsToSelect5").cache()
dfTrain3.agg(sum(col("someColumn7"))).show()
It looks like the cache() is useless here but there will be some further processing and modelling of the DataFrame and the cache() will be necessary.
Should I give more details? Would you like to see execution plan for dfTrain3?

Resources