I am working on a binary classification task and would like to try adding lstm layer on top of the last hidden layer of huggingface BERT model, however, I couldn't reach the last hidden layer. Is it possible to combine BERT with LSTM?
tokenizer = BertTokenizer.from_pretrained(model_path)
tain_inputs, train_labels, train_masks = data_prepare_BERT(
train_file, lab2ind, tokenizer, content_col, label_col,
max_seq_length)
validation_inputs, validation_labels, validation_masks = data_prepare_BERT(
dev_file, lab2ind, tokenizer, content_col, label_col,max_seq_length)
# Load BertForSequenceClassification, the pretrained BERT model with a single linear classification layer on top.
model = BertForSequenceClassification.from_pretrained(
model_path, num_labels=len(lab2ind))
Indeed it is possible, but you need to implement it yourself. BertForSequenceClassification class is a wrapper for BertModel. It runs the model, takes the hidden state corresponding to the [CLS] tokens, and applies a classifier on top of that.
In your case, you can the class as a starting point, and add there an LSTM layer between the BertModel and the classifier. The BertModel returns both the hidden states and a pooled state for classification in a tuple. Just take the other tuple member than is used in the original class.
Although it is technically possible, I would expect any performance gain compared to using BertForSequenceClassification. Finetuning of the Transformer layers can learn anything that an additional LSTM layer is capable of.
Related
i would like to know when people say pretrained bert model, is it only the final classification neural network is trained
Or
Is there any update inside transformer through back propagation along with classification neural network
During pre-training, there is a complete training if the model (updation of weights). Moreover, BERT is trained on Masked Language Model objective and not classification objective.
In pre-training, you usually train a model with huge amount of generic data. Thus, it has to be fine-tuned with the task-specific data and task-specific objective.
So, if your task is classification on a dataset X. You fine-tune BERT accordingly. And now, you will be adding a task-specific layer (classification layer, in BERT they have used dense layer over [CLS] token). While fine-tuning, you update the pre-trained model weights as well as the new task-specific layer.
In the fully connected hidden layer of Keras embedding, what is the activation function leveraged? I'm either misunderstanding the concept of this class or unable to find documentation. I understand that it is encoding from word to real-valued vector of dimension d via answers like the below on stackoverflow:
Embedding layers in Keras are trained just like any other layer in your network architecture: they are tuned to minimize the loss function by using the selected optimization method. The major difference with other layers, is that their output is not a mathematical function of the input. Instead the input to the layer is used to index a table with the embedding vectors [1]. However, the underlying automatic differentiation engine has no problem to optimize these vectors to minimize the loss function...
In my network, I have a word embedding portion that is then linked to a larger network that is predicting a binary outcome (e.g., click yes/no). I understand that this Keras embedding is not operating like word2vec because here my embedding is being trained and updated against my end cross-entropy function. But, there is no mention of how the embedding fully-connected layer is activated. Thanks!
How can I use the weights of a pre-trained network in my tensorflow project?
I know some theory information about this but no information about coding in tensorflow.
As been pointed out by #Matias Valdenegro in the comments, your first question does not make sense. For your second question however, there are multiple ways to do so. The term that you're searching for is Transfer Learning (TL). TL means transferring the "knowledge" (basically it's just the weights) from a pre-trained model into your model. Now there are several types of TL.
1) You transfer the entire weights from a pre-trained model into your model and use that as a starting point to train your network.
This is done in a situation where you now have extra data to train your model but you don't want to start over the training again. Therefore you just load the weights from your previous model and resume the training.
2) You transfer only some of the weights from a pre-trained model into your new model.
This is done in a situation where you have a model trained to classify between, say, 5 classes of objects. Now, you want to add/remove a class. You don't have to re-train the whole network from the start if the new class that you're adding has somewhat similar features with (an) existing class(es). Therefore, you build another model with the same exact architecture as your previous model except the fully-connected layers where now you have different output size. In this case, you'll want to load the weights of the convolutional layers from the previous model and freeze them while only re-train the fully-connected layers.
To perform these in Tensorflow,
1) The first type of TL can be performed by creating a model with the same exact architecture as the previous model and simply loading the model using tf.train.Saver().restore() module and continue the training.
2) The second type of TL can be performed by creating a model with the same exact architecture for the parts where you want to retain the weights and then specify the name of the weights in which you want to load from the previous pre-trained weights. You can use the parameter "trainable=False" to prevent Tensorflow from updating them.
I hope this helps.
I have a set of sentences and their scores, I would like to train a marking system that could predict the score for a given sentence, such one example is like this:
(X =Tomorrow is a good day, Y = 0.9)
I would like to use LSTM to build such a marking system, and also consider the sequential relationship between each word in the sentence, so the training example shown above is transformed as following:
(x1=Tomorrow, y1=is) (x2=is, y2=a) (x3=a, y3=good) (x4=day, y4=0.9)
When training this LSTM, I would like the first three time steps using a softmax classifier, and the final step using a MSE. It is obvious that the loss function used in this LSTM is composed of two different loss functions. In this case, it seems the Keras does not provide the way to address my problem directly. In addition, I am not sure whether my method to build the marking system is correct or not.
Keras support multiple loss functions as well:
model = Model(inputs=inputs,
outputs=[lang_model, sent_model])
model.compile(optimizer='sgd',
loss=['categorical_crossentropy', 'mse'],
metrics=['accuracy'], loss_weights=[1., 1.])
Based on your explanation, I think you need a model that first, predict a token based on previous tokens, in NLP domain it usually called Language model, and then compute a score which I assume it is a sentiment (it is applicable to other domain).
To do so, you can train your language model with LSTM and pick the last output of LSTM for your ranking task. To this end, you need to define two loss function: categorical_crossentropy for the language model and MSE for the ranking task.
This tutorial would be helpful: https://www.pyimagesearch.com/2018/06/04/keras-multiple-outputs-and-multiple-losses/
I have 10 class dataset with this I got 85% accuracy, got the same accuracy on a saved model.
now I want to add a new class, how to add a new class To the saved model.
I tried by deleting the last layer and train but model get overfit and in prediction every Images show same result (newly added class).
This is what I did
model.pop()
base_model_layers = model.output
pred = Dense(11, activation='softmax')(base_model_layers)
model = Model(inputs=model.input, outputs=pred)
# compile and fit step
I have trained model with 10 class I want to load the model train with class 11 data and give predictions.
Using the model.pop() method and then the Keras Model() API will lead you to an error. The Model() API does not have the .pop() method, so if you want to re-train your model more than once you will have this error.
But the error only occurs if you, after the re-training, save the model and use the new saved model in the next re-training.
Another very wrong and used approach is to use the model.layers.pop(). This time the problem is that function only removes the last layer in the copy it returns. So, the model still has the layer, and just the method's return does not have the layer.
I recommend the following solution:
Admitting you have your already trained model saved in the model variable, something like:
model = load_my_trained_model_function()
# creating a new model
model_2 = Sequential()
# getting all the layers except the output one
for layer in model.layers[:-1]: # just exclude last layer from copying
model_2.add(layer)
# prevent the already trained layers from being trained again
# (you can use layers[:-n] to only freeze the model layers until the nth layer)
for layer in model_2.layers:
layer.trainable = False
# adding the new output layer, the name parameter is important
# otherwise, you will add a Dense_1 named layer, that normally already exists, leading to an error
model_2.add(Dense(num_neurons_you_want, name='new_Dense', activation='softmax'))
Now you should specify the compile and fit methods to train your model and it's done:
model_2.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# model.fit trains the model
model_history = model_2.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_split=0.1)
EDIT:
Note that by adding a new output layer we do not have the weights and biases adjusted in the last training.
Thereby we lost pretty much everything from the previous training.
We need to save the weights and biases of the output layer of the previous training, and then we must add them to the new output layer.
We also must think if we should let all the layers train or not, or even if we should allow the training of only some intercalated layers.
To get the weights and biases from the output layer using Keras we can use the following method:
# weights_training[0] = layer weights
# weights_training[1] = layer biases
weights_training = model.layers[-1].get_weights()
Now you should specify the weights for the new output layer. You can use, for example, the mean of the weights for the weights of the new classes. It's up to you.
To set the weights and biases of the new output layer using Keras we can use the following method:
model_2.layers[-1].set_weights(weights_re_training)
model.pop()
base_model_layers = model.output
pred = Dense(11, activation='softmax')(base_model_layers)
model = Model(inputs=model.input, outputs=pred)
Freeze the first layers, before train it
for layer in model.layers[:-2]:
layer.trainable = False
I am assuming that the problem is singlelabel-multiclass classification i.e. a sample will belong to only 1 of the 11 classes.
This answer will be completely based on implementing the way humans learn into machines. Hence, this will not provide you with a proper code of how to do that but it will tell you what to do and you will be able to easily implement it in keras.
How does a human child learn when you teach him new things? At first, we ask him to forget the old and learn the new. This does not actually mean that the old learning is useless but it means that for the time while he is learning the new, the old knowledge should not interfere as it will confuse the brain. So, the child will only learn the new for sometime.
But the problem here is, things are related. Suppose, the child learned C programming language and then learned compilers. There is a relation between compilers and programming language. The child cannot master computer science if he learns these subjects separately, right? At this point we introduce the term 'intelligence'.
The kid who understands that there is a relation between the things he learned before and the things he learned now is 'intelligent'. And the kid who finds the actual relation between the two things is 'smart'. (Going deep into this is off-topic)
What I am trying to say is:
Make the model learn the new class separately.
And then, make the model find a relation between the previously learned classes and the new class.
To do this, you need to train two different models:
The model which learns to classify on the new class: this model will be a binary classifier. It predicts a 1 if the sample belongs to class 11 and 0 if it doesn't. Now, you already have the training data for samples belonging to class 11 but you might not have data for the samples which doesn't belong to class 11. For this, you can randomly select samples which belong to classes 1 to 10. But note that the ratio of samples belonging to class 11 to that not belonging to class 11 must be 1:1 in order to train the model properly. That means, 50% of the samples must belong to class 11.
Now, you have two separate models: the one which predicts class 1-10 and one which predicts class 11. Now, concatenate the outputs of (the 2nd last layers) these two models with a newly created Dense layer with 11 nodes and let the whole model retrain itself adjusting the weights of pretrained two models and learning new weights of the dense layer. Keep the learning rate low.
The final model is the third model which is a combination of two models (without last Dense layer) + a new Dense layer.
Thank you..