Backtransforming a PyTorch Tensor - pytorch

I have trained a WGAN on the CelebA dataset in PyTorch following this youtube video. Since I do this on Google Cloud Platform where TensorBoard is not availabe, I save one figure of generated images by the GAN every epoch to see how the GAN is actually doing.
Now, the saved pdf files look sth like this: generated images. Unfortunately, this is not really readable, and I suspect this has to do with the preprocessing I do:
trafo = transforms.Compose(
[transforms.Resize(size = (64, 64)),
transforms.ToTensor(),
transforms.Normalize( mean = (0.5,), std = (0.5,))])
Is there any way to kind of undo this transformation when I save the image?
Currently, I save the image every epoch as follows:
visualization = torchvision.utils.make_grid(
tensor = gen(fixed_noise),
nrow = 8,
normalize = False)
plt.savefig("generated_WGAN_" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".pdf")
Also, I should probably mention that in the Jupyter notebook, I get the following warning:
"Clipping input data to the valid range for imshow with RGB data ([0..1]) for floats or [0..255] for integers)."

The torchvision.transform.Normalize function is usually used to standardize data (make mean(data)=0 and std(x)=1) while the normalize option on torchvision.utils.make_grid is used to normalize the data between [0,1] given a range. So no need to implement a function to fix this.
If True, shift the image to the range (0, 1), by the min and max values specified by range. Default: False.
Here you are looking to normalize between 0 and 1. Given a tensor x:
torchvision.utils.make_grid(x, nrow=8, normalize=True, range=(x.min(), x.max()))
Here are some examples of use provided by the PyTorch's documentation.
Back to your original question, I should mention that torchvision.transform.Normalize(mean=0.5, std=0.5) doesn't transform your data such that it has mean=0.5 and std=0.5... Neither will it standardize it to mean=0, std=1. You have to measure the mean and std from your dataset.
torchvision.transform.Normalize simply performs a shift-scale operation. To undo that just unscale-unshift with the same values:
>>> x = torch.rand(64, 3, 100, 100)*torch.rand(64, 1, 1, 1)
>>> x.mean(), x.std()
(tensor(0.2536), tensor(0.2175))
>>> t = T.Normalize(mean, std)
>>> t_inv = lambda x: x*std + mean
>>> x_after = t(x)
>>> x_after.mean(), x_after.std()
(tensor(-0.4928), tensor(0.4350))
>>> x_before = t_inv(x_after)
>>> x_before.mean(), x_before.std()
(tensor(0.2536), tensor(0.2175))

It seems like your output pixel values are in range [-1, 1] (please verify this).
Therefore, when you save the images, the negative part is being clipped (as the error message you got suggests).
Try:
visualization = torchvision.utils.make_grid(
tensor = torch.clamp(gen(fixed_noise), -1, 1) * 0.5 + 0.5, # from [-1, 1] -> [0, 1]
nrow = 8,
normalize = False)
plt.savefig("generated_WGAN_" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".pdf")

Related

Pytorch dimension change

Is there any methods to change [1,512,1,1] to [1,512,2,2] tensor.
I know it is not possible just by changing the dimensions.
Are there any ways using concat or stack with PyTorch (torch.stack, torch.cat)
I make tensor with following code
a = torch.rand([1,512,1,1])
How can I change this to tensor with dimension [1,512,2,2]
That would be with torch.repeat, this will copy the data:
>>> a = a.repeat(1, 1, 2, 2)
If you do not wish to copy the data, then use torch.expand:
>>> a = a.expand(-1, -1, 2, 2)
I tried this
tmp = torch.cat([a,a],2)
a = torch.cat([tmp,tmp],3)

Keras layer for slicing image data into sliding windows

I have a set of images, all of varying widths, but with fixed height set to 100 pixels and 3 channels of depth. My task is to classify if each vertical line in the image is interesting or not. To do that, I look at the line in context of its 10 predecessor and successor lines. Imagine the algorithm sweeping from left to right of the image, detecting vertical lines containing points of interest.
My first attempt at doing this was to manually cut out these sliding windows using numpy before feeding the data into the Keras model. Like this:
# Pad left and right
s = np.repeat(D[:1], 10, axis = 0)
e = np.repeat(D[-1:], 10, axis = 0)
# D now has shape (w + 20, 100, 3)
D = np.concatenate((s, D, e))
# Sliding windows creation trick from SO question
idx = np.arange(21)[None,:] + np.arange(len(D) - 20)[:,None]
windows = D[indexer]
Then all windows and all ground truth 0/1 values for all vertical lines in all images would be concatenated into two very long arrays.
I have verified that this works, in principle. I fed each window to a Keras layer looking like this:
Conv2D(20, (5, 5), input_shape = (21, 100, 3), padding = 'valid', ...)
But the windowing causes the memory usage to increase 21 times so doing it this way becomes impractical. But I think my scenario is a very common in machine learning so there must be some standard method in Keras to do this efficiently? E.g I would like to feed Keras my raw image data (w, 100, 80) and tell it what the sliding window sizes are and let it figure out the rest. I have looked at some sample code but I'm a ml noob so I don't get it.
Unfortunately this isn't an easy problem because it can involve using a variable sized input for your Keras model. While I think it is possible to do this with proper use of placeholders that's certainly no place for a beginner to start. your other option is a data generator. As with many computationally intensive tasks there is often a trade off between compute speed and memory requirements, using a generator is more compute heavy and it will be done entirely on your cpu (no gpu acceleration), but it won't make the memory increase.
The point of a data generator is that it will apply the operation to images one at a time to produce the batch, then train on that batch, then free up the memory - so you only end up keeping one batch worth of data in memory at any time. Unfortunately if you have a time consuming generation then this can seriously affect performance.
The generator will be a python generator (using the 'yield' keyword) and is expected to produce a single batch of data, keras is very good at using arbitrary batch sizes, so you can always make one image yield one batch, especially to start.
Here is the keras page on fit_generator - I warn you, this starts to become a lot of work very quickly, consider buying more memory:
https://keras.io/models/model/#fit_generator
Fine I'll do it for you :P
import numpy as np
import pandas as pd
import keras
from keras.models import Model, model_from_json
from keras.layers import Dense, Concatenate, Multiply,Add, Subtract, Input, Dropout, Lambda, Conv1D, Flatten
from tensorflow.python.client import device_lib
# check for my gpu
print(device_lib.list_local_devices())
# make some fake image data
# 1000 random widths
data_widths = np.floor(np.random.random(1000)*100)
# producing 1000 random images with dimensions w x 100 x 3
# and a vector of which vertical lines are interesting
# I assume your data looks like this
images = []
interesting = []
for w in data_widths:
images.append(np.random.random([int(w),100,3]))
interesting.append(np.random.random(int(w))>0.5)
# this is a generator
def image_generator(images, interesting):
num = 0
while num < len(images):
windows = None
truth = None
D = images[num]
# this should look familiar
# Pad left and right
s = np.repeat(D[:1], 10, axis = 0)
e = np.repeat(D[-1:], 10, axis = 0)
# D now has shape (w + 20, 100, 3)
D = np.concatenate((s, D, e))
# Sliding windows creation trick from SO question
idx = np.arange(21)[None,:] + np.arange(len(D) - 20)[:,None]
windows = D[idx]
truth = np.expand_dims(1*interesting[num],axis=1)
yield (windows, truth)
num+=1
# the generator MUST loop
if num == len(images):
num = 0
# basic model - replace with your own
input_layer = Input(shape = (21,100,3), name = "input_node")
fc = Flatten()(input_layer)
fc = Dense(100, activation='relu',name = "fc1")(fc)
fc = Dense(50, activation='relu',name = "fc2")(fc)
fc = Dense(10, activation='relu',name = "fc3")(fc)
output_layer = Dense(1, activation='sigmoid',name = "output")(fc)
model = Model(input_layer,output_layer)
model.compile(optimizer="adam", loss='binary_crossentropy')
model.summary()
#and training
training_history = model.fit_generator(image_generator(images, interesting),
epochs =5,
initial_epoch = 0,
steps_per_epoch=len(images),
verbose=1
)

Implementing word dropout in pytorch

I want to add word dropout to my network so that I can have sufficient training examples for training the embedding of the "unk" token. As far as I'm aware, this is standard practice. Let's assume the index of the unk token is 0, and the index for padding is 1 (we can switch them if that's more convenient).
This is a simple CNN network which implements word dropout the way I would have expected it to work:
class Classifier(nn.Module):
def __init__(self, params):
super(Classifier, self).__init__()
self.params = params
self.word_dropout = nn.Dropout(params["word_dropout"])
self.pad = torch.nn.ConstantPad1d(max(params["window_sizes"])-1, 1)
self.embedding = nn.Embedding(params["vocab_size"], params["word_dim"], padding_idx=1)
self.convs = nn.ModuleList([nn.Conv1d(1, params["feature_num"], params["word_dim"] * window_size, stride=params["word_dim"], bias=False) for window_size in params["window_sizes"]])
self.dropout = nn.Dropout(params["dropout"])
self.fc = nn.Linear(params["feature_num"] * len(params["window_sizes"]), params["num_classes"])
def forward(self, x, l):
x = self.word_dropout(x)
x = self.pad(x)
embedded_x = self.embedding(x)
embedded_x = embedded_x.view(-1, 1, x.size()[1] * self.params["word_dim"]) # [batch_size, 1, seq_len * word_dim]
features = [F.relu(conv(embedded_x)) for conv in self.convs]
pooled = [F.max_pool1d(feat, feat.size()[2]).view(-1, params["feature_num"]) for feat in features]
pooled = torch.cat(pooled, 1)
pooled = self.dropout(pooled)
logit = self.fc(pooled)
return logit
Don't mind the padding - pytorch doesn't have an easy way of using non zero padding in CNNs, much less trainable non-zero padding, so I'm doing it manually. Dropout also doesn't allow me to use non zero dropout, and I want to separate the padding token from the unk token. I'm keeping it in my example because it's the reason for this question's existence.
This doesn't work because dropout wants Float Tensors so that it can scale them properly, while my input is Long Tensors that don't need to be scaled.
Is there an easy way of doing this in pytorch? I essentially want to use LongTensor-friendly dropout (bonus: better if it will let me specify a dropout constant that isn't 0, so that I could use zero padding).
Actually I would do it outside of your model, before converting your input into a LongTensor.
This would look like this:
import random
def add_unk(input_token_id, p):
#random.random() gives you a value between 0 and 1
#to avoid switching your padding to 0 we add 'input_token_id > 1'
if random.random() < p and input_token_id > 1:
return 0
else:
return input_token_id
#than you have your input token_id
#for this example I take just a random number, lets say 127
input_token_id = 127
#let p be your probability for UNK
p = 0.01
your_input_tensor = torch.LongTensor([add_unk(input_token_id, p)])
Edit:
So there are two options which come to my mind which are actually GPU-friendly. In general both solutions should be much more efficient.
Option one - Doing computation directly in forward():
If you're not using torch.utils and don't have plans using it later this is probably the way to go.
Instead of doing the computation before we just do it in the forward() method of main PyTorch class. However I see no (simple) way doing this in torch 0.3.1., so you would need to upgrade to version 0.4.0:
So imagine x is your input vector:
>>> x = torch.tensor(range(10))
>>> x
tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
probs is a vector containing uniform probabilities for dropout so we can check later agains our probability for dropout:
>>> probs = torch.empty(10).uniform_(0, 1)
>>> probs
tensor([ 0.9793, 0.1742, 0.0904, 0.8735, 0.4774, 0.2329, 0.0074,
0.5398, 0.4681, 0.5314])
Now we apply the dropout probabilities probs on our input x:
>>> torch.where(probs > 0.2, x, torch.zeros(10, dtype=torch.int64))
tensor([ 0, 0, 0, 3, 4, 5, 0, 7, 8, 9])
Note: To see some effect I chose a dropout probability of 0.2 here. I reality you probably want it to be smaller.
You can pick for this any token / id you like, here is an example with 42 as unknown token id:
>>> unk_token = 42
>>> torch.where(probs > 0.2, x, torch.empty(10, dtype=torch.int64).fill_(unk_token))
tensor([ 0, 42, 42, 3, 4, 5, 42, 7, 8, 9])
torch.where comes with PyTorch 0.4.0:
https://pytorch.org/docs/master/torch.html#torch.where
I don't know about the shapes of your network, but your forward() should look something like this then (when using mini-batching you need to flatten the input before applying dropout):
def forward_train(self, x, l):
# probabilities
probs = torch.empty(x.size(0)).uniform_(0, 1)
# applying word dropout
x = torch.where(probs > 0.02, x, torch.zeros(x.size(0), dtype=torch.int64))
# continue like before ...
x = self.pad(x)
embedded_x = self.embedding(x)
embedded_x = embedded_x.view(-1, 1, x.size()[1] * self.params["word_dim"]) # [batch_size, 1, seq_len * word_dim]
features = [F.relu(conv(embedded_x)) for conv in self.convs]
pooled = [F.max_pool1d(feat, feat.size()[2]).view(-1, params["feature_num"]) for feat in features]
pooled = torch.cat(pooled, 1)
pooled = self.dropout(pooled)
logit = self.fc(pooled)
return logit
Note: I named the function forward_train() so you should use another forward() without dropout for evaluation / predicting. But you could also use some if conditions with train().
Option two: using torch.utils.data.Dataset:
If you're using Dataset provided by torch.utils it is very easy to do this kind of pre-processing efficiently. Dataset uses strong multi-processing acceleration by default so the the code sample above just has to be executed in the __getitem__ method of your Dataset class.
This could look like this:
def __getitem__(self, index):
'Generates one sample of data'
# Select sample
ID = self.input_tokens[index]
# Load data and get label
# using add ink_unk function from code above
X = torch.LongTensor(add_unk(ID, p=0.01))
y = self.targets[index]
return X, y
This is a bit out of context and doesn't look very elegant but I think you get the idea. According to this blog post of Shervine Amidi at Stanford it should be no problem to do more complex pre-processing steps in this function:
Since our code [Dataset is meant] is designed to be multicore-friendly, note that you
can do more complex operations instead (e.g. computations from source
files) without worrying that data generation becomes a bottleneck in
the training process.
The linked blog post - "A detailed example of how to generate your data in parallel with PyTorch" - provides also a good guide for implementing the data generation with Dataset and DataLoader.
I guess you'll prefer option one - only two lines and it should be very efficient. :)
Good luck!

Python Shape function for k-means clustering

I have one geotiff grey scale image which gave me the (4377, 6172) 2D array. In the first part, I am considering (:1024, :1024) values(Total values are -> 1024 * 1024 = 1048576) for my compression algorithm. Through this algorithm, I am getting total 4 values in finalmatrix list var through the algorithm. After this, I am applying K-means algorithm on that values. A program is below :
import numpy as np
from osgeo import gdal
from sklearn import cluster
import matplotlib.pyplot as plt
dataset =gdal.Open("1.tif")
band = dataset.GetRasterBand(1)
img = band.ReadAsArray()
finalmat = [255, 0, 2, 2]
#Converting list to array for dimensional change
ay = np.asarray(finalmat).reshape(-1,1)
fig = plt.figure()
k_means = cluster.KMeans(n_clusters=2)
k_means.fit(ay)
cluster_means = k_means.cluster_centers_.squeeze()
a_clustered = k_means.labels_
print('# of observation :',ay.shape)
print('Cluster Means : ', cluster_means)
a_clustered.shape= img.shape
fig=plt.figure(figsize=(125,125))
ax = plt.subplot(2,4,8)
plt.axis('off')
xlabel = str(1) , ' clusters'
ax.set_title(xlabel)
plt.imshow(a_clustered)
plt.show()
fig.savefig('kmeans-1 clust ndvi08jan2010_guj 12 .png')
In the above Program I am getting error in the line a_clustered.shape= img.shape. The error which I am getting is below:
Error line:
a_clustered.shape= img.shape
ValueError: cannot reshape array of size 4 into shape (4377,6172)
<matplotlib.figure.Figure at 0x7fb7c63975c0>
Actually, I want to visualize the clustering on Original image through compressed value which I am getting. Can you please give suggestion what to do
It does not make a lot of sense to use KMeans on 1 dimensional data.
And it makes even less sense to use it on a 4 x 1 array!
Your site then comes from the fact that you can't just resize a 4 x 1 integer array into a large picture.
Just print the array a_clustered you are trying to plot. It probably contains [0, 1, 1, 1].

Problems using poly kernel in GridSearchCV and SVM classifier

I am trying to do a grid search using a SVM classifier.
Consider my data and target that have been parsed from file and input to numpy arrays.
I then preprocess them.
# Transform the data to have zero mean and unit variance.
zeroMeanUnitVarianceScaler = preprocessing.StandardScaler().fit(data)
zeroMeanUnitVarianceScaler.transform(data)
scaledData = data
# Transform the target to have range [-1, 1].
scaledTarget = np.empty([161L,], dtype=int)
for i in range(len(target)):
if(target[i] == 'Malignant'):
scaledTarget[i] = 1
if(target[i] == 'Benign'):
scaledTarget[i] = -1
I now try to set up my grid and fit the scaled data to targets.
# Generate parameters for parameter grid.
CValues = np.logspace(-3, 3, 7)
GammaValues = np.logspace(-3, 3, 7)
kernelValues = ('poly', 'sigmoid')
# kernelValues = ('linear', 'rbf', 'sigmoid')
degreeValues = np.array([0, 1, 2, 3, 4])
coef0Values = np.logspace(-3, 3, 7)
# Generate the parameter grid.
paramGrid = dict(C=CValues, gamma=GammaValues, kernel=kernelValues,
coef0=coef0Values)
# Create and train a SVM classifier using the parameter grid and with
stratified shuffle split.
stratifiedShuffleSplit = StratifiedShuffleSplit(n_splits = 10, test_size =
0.25, train_size = None, random_state = 0)
clf = GridSearchCV(estimator=svm.SVC(), param_grid=paramGrid,
cv=stratifiedShuffleSplit, n_jobs=1)
clf.fit(scaledData, scaledTarget)
If I uncomment the line kernelValues = ('linear', 'rbf', 'sigmoid'), then the code runs in approximately 50 seconds on my 16 GB i7-4950 3.6 GHz machine running windows 10.
However, if I try to run the code as is with 'poly' as a possible kernel value, then the code hangs forever. For example, I ran it yesterday overnight and it did not return anything when I got back in the office today.
Interestingly enough, if I try to create a SVM classifier with a poly kernel, it returns a result immediately
clf = svm.SVC(kernel='poly',degree=2)
clf.fit(data, target)
It hangs up when I do the above code. I have not tried other cv methods to see if that changes anything.
Is this a bug in sci-kit learn? Am I doing things properly? On a side note, is my method of doing gridsearch/cross validation using GridSearchCV and StratifiedShuffleSplit sensible? It seems to me the most brute force (i.e. time consuming) but robust method.
Thank you!

Resources