Functor instance of kind * - haskell

I have newtype:
newtype Foo = Foo ([Int])
I would like to simply apply Int -> Int function over it like it is possible with fmap.
I thought it will be enough to derive or implement Functor instance, but it requires type of * -> * kind.
Is there some builtin way to make my type partially fmap-able?

https://hackage.haskell.org/package/mono-traversable-1.0.15.1/docs/Data-MonoTraversable.html#t:MonoFunctor
{-# LANGUAGE TypeFamilies #-}
type instance Element Foo = Int
instance MonoFunctor Foo where
-- omap :: (Int -> Int) -> Foo -> Foo
omap = ...

Before getting carried away, you should keep in mind that you're trying to avoid (1) naming and (2) writing the monomorphic function:
mapFoo :: (Int -> Int) -> (Foo -> Foo)
mapFoo f (Foo ints) = Foo (f <$> ints)
If you really don't want to give this function a separate name and want GHC to write the function for you, I think the only sensible way is to re-define your type as a proper functor of kind * -> * with an automatically derived instance:
newtype FooF a = Foo [a] deriving (Functor)
and then define a type alias for the specialization to Int:
type Foo = FooF Int
This is not precisely equivalent to your original definition of Foo. In particular, the following expression in isolation:
Foo [1,2,3]
will have type Num a => FooF a instead of type Foo = FooF Int, so GHC may fail to infer types in all the places it used to. But, this Foo type alias will mostly behave like your original Foo newtype and will allow you to write:
fmap (*5) $ Foo [1,2,3]
and such.
On the other hand, if you want to keep your newtype the same, don't mind writing the function yourself, yet don't want to give that function a separate name, you can't use fmap (at least not without overriding the prelude definition, which kind of defeats the purpose). However, as per #leftroundabout's answer, you can use omap from the mono-traversable package. Because this requires you to define the function yourself in a MonoFunctor Foo instance (e.g., using the same definition as mapFoo above), there's no real point unless you're doing this for a bunch of non-functors besides Foo and want to use a single omap name for all of them or want to write functions that can handle any such MonoFunctor uniformly.

Related

Is this use of GADTs fully equivalent to existential types?

Existentially quantified data constructors like
data Foo = forall a. MkFoo a (a -> Bool)
| Nil
can be easily translated to GADTs:
data Foo where
MkFoo :: a -> (a -> Bool) -> Foo
Nil :: Foo
Are there any differences between them: code which compiles with one but not another, or gives different results?
They are nearly equivalent, albeit not completely so, depending on which extensions you turn on.
First of all, note that you don't need to enable the GADTs extension to use the data .. where syntax for existential types. It suffices to enable the following lesser extensions.
{-# LANGUAGE GADTSyntax #-}
{-# LANGUAGE ExistentialQuantification #-}
With these extensions, you can compile
data U where
U :: a -> (a -> String) -> U
foo :: U -> String
foo (U x f) = f x
g x = let h y = const y x
in (h True, h 'a')
The above code also compiles if we replace the extensions and the type definition with
{-# LANGUAGE ExistentialQuantification #-}
data U = forall a . U a (a -> String)
The above code, however, does not compile with the GADTs extension turned on! This is because GADTs also turns on the MonoLocalBinds extension, which prevents the above definition of g to compile. This is because the latter extension prevents h to receive a polymorphic type.
From the documentation:
Notice that GADT-style syntax generalises existential types (Existentially quantified data constructors). For example, these two declarations are equivalent:
data Foo = forall a. MkFoo a (a -> Bool)
data Foo' where { MKFoo :: a -> (a->Bool) -> Foo' }
(emphasis on the word equivalent)
The latter isn't actually a GADT - it's an existentially quantified data type declared with GADT syntax. As such, it is identical to the former.
The reason it's not a GADT is that there is no type variable that gets refined based on the choice of constructor. That's the key new functionality added by GADTs. If you have a GADT like this:
data Foo a where
StringFoo :: String -> Foo String
IntFoo :: Int -> Foo Int
Then pattern-matching on each constructor reveals additional information that can be used inside the matching clause. For instance:
deconstructFoo :: Foo a -> a
deconstructFoo (StringFoo s) = "Hello! " ++ s ++ " is a String!"
deconstructFoo (IntFoo i) = i * 3 + 1
Notice that something very interesting is happening there, from the point of view of the type system. deconstructFoo promises it will work for any choice of a, as long as it's passed a value of type Foo a. But then the first equation returns a String, and the second equation returns an Int.
This is what you cannot do with a regular data type, and the new thing GADTs provide. In the first equation, the pattern match adds the constraint (a ~ String) to its context. In the second equation, the pattern match adds (a ~ Int).
If you haven't created a type where pattern-matching can cause type refinement, you don't have a GADT. You just have a type declared with GADT syntax. Which is fine - in a lot of ways, it's a better syntax than the basic data type syntax. It's just more verbose for the easiest cases.

Why do Haskell's scoped type variables not allow binding of type variables in pattern bindings?

I noticed that GHC's ScopedTypeVariables is able to bind type variables in function patterns but not let patterns.
As a minimal example, consider the type
data Foo where Foo :: Typeable a => a -> Foo
If I want to gain access to the type inside a Foo, the following function does not compile:
fooType :: Foo -> TypeRep
fooType (Foo x) =
let (_ :: a) = x
in typeRep (Proxy::Proxy a)
But using this trick to move the type variable binding to a function call, it works without issue:
fooType (Foo x) =
let helper (_ :: a) = typeRep (Proxy::Proxy a)
in helper x
Since let bindings are actually function bindings in disguise, why aren't the above two code snippets equivalent?
(In this example, other solutions would be to create the TypeRep with typeOf x, or bind the variable directly as x :: a in the top-level function. Neither of those options are available in my real code, and using them doesn't answer the question.)
The big thing is, functions are case expressions in disguise, not let expressions. case matching and let matching have different semantics. This is also why you can't match a GADT constructor that does type refinement in a let expression.
The difference is that case matches evaluate the scrutinee before continuing, whereas let matches throw a thunk onto the heap that says "do this evaluation when the result is demanded". GHC doesn't know how to preserve locally-scoped types (like a in your example) across all the potential ways laziness may interact with them, so it just doesn't try. If locally-scoped types are involved, use a case expression such that laziness can't become a problem.
As for your code, ScopedTypeVariables actually provides you a far more succinct option:
{-# Language ScopedTypeVariables, GADTs #-}
import Data.Typeable
import Data.Proxy
data Foo where
Foo :: Typeable a => a -> Foo
fooType :: Foo -> TypeRep
fooType (Foo (x :: a)) = typeRep (Proxy :: Proxy a)

Difference between type family and partial newtype? (and partial data?)

I've had to interface two libraries where metadata is represented as a type parameter in one and as a record field in the other. I wrote an adaptor using a GADT. Here's a distilled version:
{-# LANGUAGE GADTs #-}
newtype TFId a = MkId a
data TFDup a = MkDup !a !a
data GADT tf where
ConstructorId :: GADT TFId
ConstructorDup :: GADT TFDup
main = do
f ConstructorId
f ConstructorDup
f :: GADT tf -> IO ()
f = _
This works. (May not be perfect; comments welcome, but that's not the question.)
It took me some time to get to this working state. My initial intuition was to use a type family for TFId, figuring: “GADT has kind (* -> *) -> *; in ConstructorDup TFDup has kind * -> *; so for ConstructorId I can use the following * -> * type family:”
{-# LANGUAGE TypeFamilies #-}
type family TFId a where TFId a = a
The type constructor does have the same kind * -> *, but GHC apparently won't have it in the same place:
error: …
The type family ‘TFId’ should have 1 argument, but has been given none
In the definition of data constructor ‘ConstructorId’
In the data type declaration for ‘GADT’
Well, if it says so…
I'm no sure I understand why it would make such a difference. No using type family stems without applying them? What's going on? Any other (better) way to do?
Injectivity.
type family F :: * -> *
type instance F Int = Bool
type instance F Char = Bool
here F Int ~ F Char. However,
data G (a :: *) = ...
will never cause G Int ~ G Char. These are guaranteed to be distinct types.
In universal quantifications like
foo :: forall f a. f a -> a
f is allowed to be G (injective) but not allowed to be F (not injective).
This is to make inference work. foo (... :: G Int) can be inferred to have type Int. foo (... :: F Int) is equivalent to foo (... :: Bool) which may have type Int, or type Char -- it's an ambiguous type.
Also consider foo True. We can't expect GHC to choose f ~ F, a ~ Int (or Char) for us. This would involve looking at all type families and see if Bool can be produced by any on them -- essentially, we would need to invert all the type families. Even if this were feasible, it would generate a huge amount of possible solutions, so it would be ambiguous.

Type synonyms with TemplateHaskell

If I have a type data Foo = Foo Int Int where frequently (but not always) the second parameter is a (fixed) function of the first, I could write a helper function mkFoo m = Foo m (f m) to reduce duplication.
I have this exact problem, but at the type level. The natural solution might be to use singletons to promote f, but my f isn't easily promoted. Instead, I'm trying to use TemplateHaskell and reflection to evaluate f at compile time at the data level. For example, I can currently do this (using ‑XDataKinds and GHC.TypeLits):
f :: Integer -> Integer
data Bar (a::Nat) (b::Nat)
mkNat :: Integer -> Q Type -- constructs a TypeLit
bar :: Bar 5 $(mkNat $ f $ proxy natValue (Proxy::Proxy 5))
It's obviously annoying to have to write this with a concrete type every time I want to use this pattern. Unfortunately, I know of no shorter or generic way to write the signature for bar. In particular, I can't define the type synonym
type Bar' (m :: Nat) = Bar m $(mkNat $ f $ proxy natVal (Proxy::Proxy m))
bar :: Bar' 5
due to TH stage restrictions (m is not imported or known when compiling the synonym).
Is there any way to simplify the signature of bar?

Are there "type-level combinators"? Will they exist in some future?

Much of what makes haskell really nice to use in my opinion are combinators such as (.), flip, $ <*> and etc. It feels almost like I can create new syntax when I need to.
Some time ago I was doing something where it would be tremendously convenient if I could "flip" a type constructor. Suppose I have some type constructor:
m :: * -> * -> *
and that I have a class MyClass that needs a type with a type constructor with kind * -> *. Naturally I would choose to code the type in such a way that I can do:
instance MyClass (m a)
But suppose I can't change that code, and suppose that what really fits into MyClass is something like
type w b = m b a
instance MyClass w where
...
and then I'd have to activate XTypeSynonymInstances. Is there some way to create a "type level combinator" Flip such that I can just do:
instance MyClass (Flip m a) where
...
?? Or other type level generalisations of common operators we use in haskell? Is this even useful or am I just rambling?
Edit:
I could do something like:
newtype Flip m a b = Flip (m b a)
newtype Dot m w a = Dot m (w a)
...
But then I'd have to use the data constructors Flip, Dot, ... around for pattern matching and etc. Is it worth it?
Your question makes sense, but the answer is: no, it's not currently possible.
The problem is that (in GHC Haskell's type system) you can't have lambdas at the type level. For anything you might try that looks like it could emulate or achieve the effect of a type level lambda, you will discover that it doesn't work. (I know, because I did.)
What you can do is declare your Flip newtypes, and then write instances of the classes you want for them, painfully with the wrapping and the unwrapping (by the way: use record syntax), and then clients of the classes can use the newtypes in type signatures and not have to worry about the details.
I'm not a type theorist and I don't know the details of why exactly we can't have type level lambdas. I think it was something to do with type inference becoming impossible, but again, I don't really know.
You can do the following, but I don't think its actually very useful, since you still can't really partially apply it:
{-# LANGUAGE TypeFamilies, FlexibleInstances #-}
module Main where
class TFlip a where
type FlipT a
instance TFlip (f a b) where
type FlipT (f a b) = f b a
-- *Main> :t (undefined :: FlipT (Either String Int))
-- (undefined :: FlipT (Either String Int)) :: Either Int [Char]
Also see this previous discussion: Lambda for type expressions in Haskell?
I'm writing answer here just for clarifying things and to tell about achievements in the last years. There're a lot of features in Haskell and now you can write some operators in type. Using $ you can write something like this:
foo :: Int -> Either String $ Maybe $ Maybe Int
to avoid parenthesis instead of good old
foo :: Int -> Either String (Maybe (Maybe Int))

Resources