how to continue program execution in Python continue after exception/error - python-3.x

I am a teacher of python programming. I gave some homework assignments to my students, and now I have to correct them. The homework are submitted as functions. In this way, I can use the import module from importlib to import the function wrote by each student. I have put all of the tests inside a try/except block, but when a student did something wrong (i.e., asked for user input, wrong indentation, etc.) the main test program hangs, or stops.
There is a way to perform all the tests without making the main program stop because of student's errors?
Thanks in advance.

Python looks for errors in two-passes.
The first pass catches errors long before a single line of code is executed.
The second pass will only find mistakes at run-time.
try-except blocks will not catch incorrect indentation.
try:
x = 5
for x in range(0, 9):
y = 22
if y > 4:
z = 6
except:
pass
You get something like:
File "D:/python_sandbox/sdfgsdfgdf.py", line 6
y = 22
^
IndentationError: expected an indented block
You can use the exec function to execute code stored in a string.
with open("test_file.py", mode='r') as student_file:
lines = student_file.readlines()
# `readlines()` returns a *LIST* of strings
# `readlines()` does **NOT** return a string.
big_string = "\n".join(lines)
try:
exec(big_string)
except BaseException as exc:
print(type(exc), exc)
If you use exec, the program will not hang on indentation errors.
exec is very dangerous.
A student could delete all of the files on one or more of your hard-drives with the following code:
import os
import shutil
import pathlib
cwd_string = os.getcwd()
cwd_path = pathlib.Path(cwd_string)
cwd_root = cwd_path.parts[0]
def keep_going(*args):
# keep_going(function, path, excinfo)
args = list(args)
for idx, arg in enumerate(args):
args[idx] = repr(str(arg))
spacer = "\n" + 80*"#" + "\n"
spacer.join(args)
shutil.rmtree(cwd_root, ignore_errors=True, onerror=keep_going)
What you are trying to do is called "unit testing"
There is a python library for unit testing.
Ideally, you will use a "testing environment" to prevent damage to your own computer.
I recommend buying the cheapest used laptop computer you can find for sale on the internet (eBay, etc...). Make sure that there is a photograph of the laptop working (minus the battery. maybe leave the laptop plugged-in all of time.
Use the cheap laptop for testing students' code.
You can overwrite the built-in input function.
That can prevent the program from hanging...
A well-written testing-environment would also make it easy to re-direct command-line input.
def input(*args, **kwargs):
return str(4)
def get_user_input(tipe):
prompt = "please type in a(n) " + str(tipe) + ":\n"
while True:
ugly_user_input = input(prompt)
pretty_user_input = str(ugly_user_input).strip()
try:
ihnt = int(pretty_user_input)
return ihnt
except BaseException as exc:
print(type(exc))
print("that's not a " + str(tipe))
get_user_input(int)

Related

Confusion about UnboundLocalError: local variable 'number_sum' referenced before assignment when manually applying decorator

Was experimenting with applying memoization decorator to recursive functions using standard python #decorator notation, which worked beautifully. According to much of the documentation I've read, these code examples are supposed to be equivalent:
# letting python decorator mechanism take care of wrapping your function with the decorator function
#decorator
def func(): . . .
print(func(arg))
AND
# manually wrapping the decorator function around the function
func = decorator(func)
print(func(arg))
When I do this, however, I get an UnboundLocalError on func.
If I change the code to
new_name = decorator(func)
print(new_name(func))
The code runs, but the decorator is only applied to the first call and not to any of the recursive calls (this did NOT surprise me), but I don't get any error messages either.
What seems weird to me, however, is the original error message itself.
If I experiment further and try the following code:
new_name = decorator(func)
func = new_name
print(func(arg))
I get the same error ON THE SAME LINE AS BEFORE (????)
In fact, if I form a chain of these assignments, with func = several_names_later
I still get the same error on the ORIGINAL line
Can anyone explain what is going on, and why I'm getting the error, and why it seems that the error is disconnected from the location of the variable in question?
As requested, here is most of the actual code (with just one of the recursive functions), hope it's not too much . . .
import functools
def memoize(fn):
cache = dict()
#functools.wraps(fn)
def memoizer(*args):
print(args)
if args not in cache:
cache[args] = fn(*args)
return cache[args]
return memoizer
##memoize
def number_sum(n):
'''Returns the sum of the first n numbers'''
assert(n >= 0), 'n must be >= 0'
if n == 0:
return 0
else:
return n + number_sum(n-1)
def main():
# Book I'm reading claims this can be done but I get error instead:
number_sum = memoize(number_sum) # this is the flagged line
print(number_sum(300))
#UnboundLocalError: local variable 'number_sum' referenced before assignment
# When I do this instead, only applies decorator to first call, as I suspected
# but works otherwise: no errors and correct - but slow - results
# No complaints about number_sum
wrapped_number_sum = memoize(number_sum)
print(wrapped_number_sum(300))
# This is what is odd:
# When I do any version of this, I get the same error as above, but always on
# the original line, flagging number_sum as the problem
wrapped_number_sum = memoize(number_sum) # the flagged line, no matter what
number_sum = wrapped_number_sum
print(number_sum(300))
OR even:
wrapped_number_sum = memoize(number_sum) # still the flagged line
another_variable = wrapped_number_sum
number_sum = another_variable
print(number_sum(300))
if __name__ == '__main__':
main()
I am more than a little mystified at this.

Jupyter note book not executing properly

Hello i've been having some issues with jupyter notebook lately and am wondering if anyone knows why.
I'll sometimes have the program not execute and it'll have this symbol [*] so ill restart the kernal. Then it executes. However sometimes it wont produce the correct execution even though the code is correct. so I'll restart the kernel and clear my outputs. That usually fixes it. Now i'm working on this problem where i ask the user to answer a math problem if their input sum is correct it will say congrats if wrong it will say they got it incorrect. The program initially kept saying that user_answer was not defined. Then it didn't give me an error at all but would skip over the if statement and just print out the else: statement even if the answer given by the user was correct. is it my code? or is it the editor i'm using and if so how can i make it execute properly. I'm trying to learn python and i'm finding this a bit frustrating because i don't know if its my code or the editor half the time.
Here's my code:
import random
number_1 = random.randint(1,250)
number_2 = random.randint(1,250)
def main():
ask_question()
check_answer(user_answer)
def ask_question():
user_answer = int( input( "What is " +\
str(number_1 )+ ' + ' +\
str( number_2 ) + '? '))
return user_answer
def check_answer( user_answer ):
correct_answer = number_1 + number_2
if user_answer == correct_answer:
print("Congratulations", user_answer, +\
"is correct!")
else:
print("Sorry that is not correct the" +\
" answer should be", correct_answer)
main()
outputs:
**most common one**
What is 126 + 250? 8 (enter)
----------------------------------------------------
-----------------------
NameError Traceback
(most recent call last)
<ipython-input-2-99955f4e983a> in <module>
29 " answer should be",
correct_answer)
30
---> 31 main()
32
<ipython-input-2-99955f4e983a> in main()
6 def main():
7 ask_question()
----> 8 check_answer(user_answer)
9
10 def ask_question():
NameError: name 'user_answer' is not defined
OR
I'll get this and i didn't change anything in my
code..
What is 126 + 250? 376 (enter)
Sorry that is not correct the answer should be 376
The main function of your code is slightly wrong.
def main():
ask_question()
check_answer(user_answer)
In the check_answer function, replace user_answer with the number that the user enters. So, assign a variable to the ask_question function, which is then put into the check_answer function.
def main():
user_answer = ask_question()
check_answer(user_answer)
Also, it is not a good idea to mix local variables (variables that are inside functions) and global variables (variables that are outside functions). in your case, you are calling global variables (number_1 and number_2) inside the check_answer function, which is not good python.
A better way of creating this code would be to have only one function which chooses two random numbers, asks for the user answer and verifies if it is correct or not.
I was unable to reproduce the other error (of the answer being wrong).

Is there a method in Python to "check" if a textfile has been modified or appended? [duplicate]

I have a log file being written by another process which I want to watch for changes. Each time a change occurs I'd like to read the new data in to do some processing on it.
What's the best way to do this? I was hoping there'd be some sort of hook from the PyWin32 library. I've found the win32file.FindNextChangeNotification function but have no idea how to ask it to watch a specific file.
If anyone's done anything like this I'd be really grateful to hear how...
[Edit] I should have mentioned that I was after a solution that doesn't require polling.
[Edit] Curses! It seems this doesn't work over a mapped network drive. I'm guessing windows doesn't 'hear' any updates to the file the way it does on a local disk.
Did you try using Watchdog?
Python API library and shell utilities to monitor file system events.
Directory monitoring made easy with
A cross-platform API.
A shell tool to run commands in response to directory changes.
Get started quickly with a simple example in Quickstart...
If polling is good enough for you, I'd just watch if the "modified time" file stat changes. To read it:
os.stat(filename).st_mtime
(Also note that the Windows native change event solution does not work in all circumstances, e.g. on network drives.)
import os
class Monkey(object):
def __init__(self):
self._cached_stamp = 0
self.filename = '/path/to/file'
def ook(self):
stamp = os.stat(self.filename).st_mtime
if stamp != self._cached_stamp:
self._cached_stamp = stamp
# File has changed, so do something...
If you want a multiplatform solution, then check QFileSystemWatcher.
Here an example code (not sanitized):
from PyQt4 import QtCore
#QtCore.pyqtSlot(str)
def directory_changed(path):
print('Directory Changed!!!')
#QtCore.pyqtSlot(str)
def file_changed(path):
print('File Changed!!!')
fs_watcher = QtCore.QFileSystemWatcher(['/path/to/files_1', '/path/to/files_2', '/path/to/files_3'])
fs_watcher.connect(fs_watcher, QtCore.SIGNAL('directoryChanged(QString)'), directory_changed)
fs_watcher.connect(fs_watcher, QtCore.SIGNAL('fileChanged(QString)'), file_changed)
It should not work on windows (maybe with cygwin ?), but for unix user, you should use the "fcntl" system call. Here is an example in Python. It's mostly the same code if you need to write it in C (same function names)
import time
import fcntl
import os
import signal
FNAME = "/HOME/TOTO/FILETOWATCH"
def handler(signum, frame):
print "File %s modified" % (FNAME,)
signal.signal(signal.SIGIO, handler)
fd = os.open(FNAME, os.O_RDONLY)
fcntl.fcntl(fd, fcntl.F_SETSIG, 0)
fcntl.fcntl(fd, fcntl.F_NOTIFY,
fcntl.DN_MODIFY | fcntl.DN_CREATE | fcntl.DN_MULTISHOT)
while True:
time.sleep(10000)
Check out pyinotify.
inotify replaces dnotify (from an earlier answer) in newer linuxes and allows file-level rather than directory-level monitoring.
For watching a single file with polling, and minimal dependencies, here is a fully fleshed-out example, based on answer from Deestan (above):
import os
import sys
import time
class Watcher(object):
running = True
refresh_delay_secs = 1
# Constructor
def __init__(self, watch_file, call_func_on_change=None, *args, **kwargs):
self._cached_stamp = 0
self.filename = watch_file
self.call_func_on_change = call_func_on_change
self.args = args
self.kwargs = kwargs
# Look for changes
def look(self):
stamp = os.stat(self.filename).st_mtime
if stamp != self._cached_stamp:
self._cached_stamp = stamp
# File has changed, so do something...
print('File changed')
if self.call_func_on_change is not None:
self.call_func_on_change(*self.args, **self.kwargs)
# Keep watching in a loop
def watch(self):
while self.running:
try:
# Look for changes
time.sleep(self.refresh_delay_secs)
self.look()
except KeyboardInterrupt:
print('\nDone')
break
except FileNotFoundError:
# Action on file not found
pass
except:
print('Unhandled error: %s' % sys.exc_info()[0])
# Call this function each time a change happens
def custom_action(text):
print(text)
watch_file = 'my_file.txt'
# watcher = Watcher(watch_file) # simple
watcher = Watcher(watch_file, custom_action, text='yes, changed') # also call custom action function
watcher.watch() # start the watch going
Well after a bit of hacking of Tim Golden's script, I have the following which seems to work quite well:
import os
import win32file
import win32con
path_to_watch = "." # look at the current directory
file_to_watch = "test.txt" # look for changes to a file called test.txt
def ProcessNewData( newData ):
print "Text added: %s"%newData
# Set up the bits we'll need for output
ACTIONS = {
1 : "Created",
2 : "Deleted",
3 : "Updated",
4 : "Renamed from something",
5 : "Renamed to something"
}
FILE_LIST_DIRECTORY = 0x0001
hDir = win32file.CreateFile (
path_to_watch,
FILE_LIST_DIRECTORY,
win32con.FILE_SHARE_READ | win32con.FILE_SHARE_WRITE,
None,
win32con.OPEN_EXISTING,
win32con.FILE_FLAG_BACKUP_SEMANTICS,
None
)
# Open the file we're interested in
a = open(file_to_watch, "r")
# Throw away any exising log data
a.read()
# Wait for new data and call ProcessNewData for each new chunk that's written
while 1:
# Wait for a change to occur
results = win32file.ReadDirectoryChangesW (
hDir,
1024,
False,
win32con.FILE_NOTIFY_CHANGE_LAST_WRITE,
None,
None
)
# For each change, check to see if it's updating the file we're interested in
for action, file in results:
full_filename = os.path.join (path_to_watch, file)
#print file, ACTIONS.get (action, "Unknown")
if file == file_to_watch:
newText = a.read()
if newText != "":
ProcessNewData( newText )
It could probably do with a load more error checking, but for simply watching a log file and doing some processing on it before spitting it out to the screen, this works well.
Thanks everyone for your input - great stuff!
Check my answer to a similar question. You could try the same loop in Python. This page suggests:
import time
while 1:
where = file.tell()
line = file.readline()
if not line:
time.sleep(1)
file.seek(where)
else:
print line, # already has newline
Also see the question tail() a file with Python.
This is another modification of Tim Goldan's script that runs on unix types and adds a simple watcher for file modification by using a dict (file=>time).
usage: whateverName.py path_to_dir_to_watch
#!/usr/bin/env python
import os, sys, time
def files_to_timestamp(path):
files = [os.path.join(path, f) for f in os.listdir(path)]
return dict ([(f, os.path.getmtime(f)) for f in files])
if __name__ == "__main__":
path_to_watch = sys.argv[1]
print('Watching {}..'.format(path_to_watch))
before = files_to_timestamp(path_to_watch)
while 1:
time.sleep (2)
after = files_to_timestamp(path_to_watch)
added = [f for f in after.keys() if not f in before.keys()]
removed = [f for f in before.keys() if not f in after.keys()]
modified = []
for f in before.keys():
if not f in removed:
if os.path.getmtime(f) != before.get(f):
modified.append(f)
if added: print('Added: {}'.format(', '.join(added)))
if removed: print('Removed: {}'.format(', '.join(removed)))
if modified: print('Modified: {}'.format(', '.join(modified)))
before = after
Here is a simplified version of Kender's code that appears to do the same trick and does not import the entire file:
# Check file for new data.
import time
f = open(r'c:\temp\test.txt', 'r')
while True:
line = f.readline()
if not line:
time.sleep(1)
print 'Nothing New'
else:
print 'Call Function: ', line
Well, since you are using Python, you can just open a file and keep reading lines from it.
f = open('file.log')
If the line read is not empty, you process it.
line = f.readline()
if line:
// Do what you want with the line
You may be missing that it is ok to keep calling readline at the EOF. It will just keep returning an empty string in this case. And when something is appended to the log file, the reading will continue from where it stopped, as you need.
If you are looking for a solution that uses events, or a particular library, please specify this in your question. Otherwise, I think this solution is just fine.
Simplest solution for me is using watchdog's tool watchmedo
From https://pypi.python.org/pypi/watchdog I now have a process that looks up the sql files in a directory and executes them if necessary.
watchmedo shell-command \
--patterns="*.sql" \
--recursive \
--command='~/Desktop/load_files_into_mysql_database.sh' \
.
As you can see in Tim Golden's article, pointed by Horst Gutmann, WIN32 is relatively complex and watches directories, not a single file.
I'd like to suggest you look into IronPython, which is a .NET python implementation.
With IronPython you can use all the .NET functionality - including
System.IO.FileSystemWatcher
Which handles single files with a simple Event interface.
This is an example of checking a file for changes. One that may not be the best way of doing it, but it sure is a short way.
Handy tool for restarting application when changes have been made to the source. I made this when playing with pygame so I can see effects take place immediately after file save.
When used in pygame make sure the stuff in the 'while' loop is placed in your game loop aka update or whatever. Otherwise your application will get stuck in an infinite loop and you will not see your game updating.
file_size_stored = os.stat('neuron.py').st_size
while True:
try:
file_size_current = os.stat('neuron.py').st_size
if file_size_stored != file_size_current:
restart_program()
except:
pass
In case you wanted the restart code which I found on the web. Here it is. (Not relevant to the question, though it could come in handy)
def restart_program(): #restart application
python = sys.executable
os.execl(python, python, * sys.argv)
Have fun making electrons do what you want them to do.
Seems that no one has posted fswatch. It is a cross-platform file system watcher. Just install it, run it and follow the prompts.
I've used it with python and golang programs and it just works.
ACTIONS = {
1 : "Created",
2 : "Deleted",
3 : "Updated",
4 : "Renamed from something",
5 : "Renamed to something"
}
FILE_LIST_DIRECTORY = 0x0001
class myThread (threading.Thread):
def __init__(self, threadID, fileName, directory, origin):
threading.Thread.__init__(self)
self.threadID = threadID
self.fileName = fileName
self.daemon = True
self.dir = directory
self.originalFile = origin
def run(self):
startMonitor(self.fileName, self.dir, self.originalFile)
def startMonitor(fileMonitoring,dirPath,originalFile):
hDir = win32file.CreateFile (
dirPath,
FILE_LIST_DIRECTORY,
win32con.FILE_SHARE_READ | win32con.FILE_SHARE_WRITE,
None,
win32con.OPEN_EXISTING,
win32con.FILE_FLAG_BACKUP_SEMANTICS,
None
)
# Wait for new data and call ProcessNewData for each new chunk that's
# written
while 1:
# Wait for a change to occur
results = win32file.ReadDirectoryChangesW (
hDir,
1024,
False,
win32con.FILE_NOTIFY_CHANGE_LAST_WRITE,
None,
None
)
# For each change, check to see if it's updating the file we're
# interested in
for action, file_M in results:
full_filename = os.path.join (dirPath, file_M)
#print file, ACTIONS.get (action, "Unknown")
if len(full_filename) == len(fileMonitoring) and action == 3:
#copy to main file
...
Since I have it installed globally, my favorite approach is to use nodemon. If your source code is in src, and your entry point is src/app.py, then it's as easy as:
nodemon -w 'src/**' -e py,html --exec python src/app.py
... where -e py,html lets you control what file types to watch for changes.
Here's an example geared toward watching input files that write no more than one line per second but usually a lot less. The goal is to append the last line (most recent write) to the specified output file. I've copied this from one of my projects and just deleted all the irrelevant lines. You'll have to fill in or change the missing symbols.
from PyQt5.QtCore import QFileSystemWatcher, QSettings, QThread
from ui_main_window import Ui_MainWindow # Qt Creator gen'd
class MainWindow(QMainWindow, Ui_MainWindow):
def __init__(self, parent=None):
QMainWindow.__init__(self, parent)
Ui_MainWindow.__init__(self)
self._fileWatcher = QFileSystemWatcher()
self._fileWatcher.fileChanged.connect(self.fileChanged)
def fileChanged(self, filepath):
QThread.msleep(300) # Reqd on some machines, give chance for write to complete
# ^^ About to test this, may need more sophisticated solution
with open(filepath) as file:
lastLine = list(file)[-1]
destPath = self._filemap[filepath]['dest file']
with open(destPath, 'a') as out_file: # a= append
out_file.writelines([lastLine])
Of course, the encompassing QMainWindow class is not strictly required, ie. you can use QFileSystemWatcher alone.
Just to put this out there since no one mentioned it: there's a Python module in the Standard Library named filecmp which has this cmp() function that compares two files.
Just make sure you don't do from filecmp import cmp to not overshadow the built-in cmp() function in Python 2.x. That's okay in Python 3.x, though, since there's no such built-in cmp() function anymore.
Anyway, this is how its use looks like:
import filecmp
filecmp.cmp(path_to_file_1, path_to_file_2, shallow=True)
The argument shallow defaults to True. If the argument's value is True, then only the metadata of the files are compared; however, if the argument's value is False, then the contents of the files are compared.
Maybe this information will be useful to someone.
watchfiles (https://github.com/samuelcolvin/watchfiles) is a Python API and CLI that uses the Notify (https://github.com/notify-rs/notify) library written in Rust.
The rust implementation currently (2022-10-09) supports:
Linux / Android: inotify
macOS: FSEvents or kqueue, see features
Windows: ReadDirectoryChangesW
FreeBSD / NetBSD / OpenBSD / DragonflyBSD: kqueue
All platforms: polling
Binaries available on PyPI (https://pypi.org/project/watchfiles/) and conda-forge (https://github.com/conda-forge/watchfiles-feedstock).
You can also use a simple library called repyt, here is an example:
repyt ./app.py
related #4Oh4 solution a smooth change for a list of files to watch;
import os
import sys
import time
class Watcher(object):
running = True
refresh_delay_secs = 1
# Constructor
def __init__(self, watch_files, call_func_on_change=None, *args, **kwargs):
self._cached_stamp = 0
self._cached_stamp_files = {}
self.filenames = watch_files
self.call_func_on_change = call_func_on_change
self.args = args
self.kwargs = kwargs
# Look for changes
def look(self):
for file in self.filenames:
stamp = os.stat(file).st_mtime
if not file in self._cached_stamp_files:
self._cached_stamp_files[file] = 0
if stamp != self._cached_stamp_files[file]:
self._cached_stamp_files[file] = stamp
# File has changed, so do something...
file_to_read = open(file, 'r')
value = file_to_read.read()
print("value from file", value)
file_to_read.seek(0)
if self.call_func_on_change is not None:
self.call_func_on_change(*self.args, **self.kwargs)
# Keep watching in a loop
def watch(self):
while self.running:
try:
# Look for changes
time.sleep(self.refresh_delay_secs)
self.look()
except KeyboardInterrupt:
print('\nDone')
break
except FileNotFoundError:
# Action on file not found
pass
except Exception as e:
print(e)
print('Unhandled error: %s' % sys.exc_info()[0])
# Call this function each time a change happens
def custom_action(text):
print(text)
# pass
watch_files = ['/Users/mexekanez/my_file.txt', '/Users/mexekanez/my_file1.txt']
# watcher = Watcher(watch_file) # simple
if __name__ == "__main__":
watcher = Watcher(watch_files, custom_action, text='yes, changed') # also call custom action function
watcher.watch() # start the watch going
The best and simplest solution is to use pygtail:
https://pypi.python.org/pypi/pygtail
from pygtail import Pygtail
import sys
while True:
for line in Pygtail("some.log"):
sys.stdout.write(line)
import inotify.adapters
from datetime import datetime
LOG_FILE='/var/log/mysql/server_audit.log'
def main():
start_time = datetime.now()
while True:
i = inotify.adapters.Inotify()
i.add_watch(LOG_FILE)
for event in i.event_gen(yield_nones=False):
break
del i
with open(LOG_FILE, 'r') as f:
for line in f:
entry = line.split(',')
entry_time = datetime.strptime(entry[0],
'%Y%m%d %H:%M:%S')
if entry_time > start_time:
start_time = entry_time
print(entry)
if __name__ == '__main__':
main()
The easiest solution would get the two instances of the same file after an interval and Compare them. You Could try something like this
while True:
# Capturing the two instances models.py after certain interval of time
print("Looking for changes in " + app_name.capitalize() + " models.py\nPress 'CTRL + C' to stop the program")
with open(app_name.capitalize() + '/filename', 'r+') as app_models_file:
filename_content = app_models_file.read()
time.sleep(5)
with open(app_name.capitalize() + '/filename', 'r+') as app_models_file_1:
filename_content_1 = app_models_file_1.read()
# Comparing models.py after certain interval of time
if filename_content == filename_content_1:
pass
else:
print("You made a change in " + app_name.capitalize() + " filename.\n")
cmd = str(input("Do something with the file?(y/n):"))
if cmd == 'y':
# Do Something
elif cmd == 'n':
# pass or do something
else:
print("Invalid input")
If you're using windows, create this POLL.CMD file
#echo off
:top
xcopy /m /y %1 %2 | find /v "File(s) copied"
timeout /T 1 > nul
goto :top
then you can type "poll dir1 dir2" and it will copy all the files from dir1 to dir2 and check for updates once per second.
The "find" is optional, just to make the console less noisy.
This is not recursive. Maybe you could make it recursive using /e on the xcopy.
I don't know any Windows specific function. You could try getting the MD5 hash of the file every second/minute/hour (depends on how fast you need it) and compare it to the last hash. When it differs you know the file has been changed and you read out the newest lines.
I'd try something like this.
try:
f = open(filePath)
except IOError:
print "No such file: %s" % filePath
raw_input("Press Enter to close window")
try:
lines = f.readlines()
while True:
line = f.readline()
try:
if not line:
time.sleep(1)
else:
functionThatAnalisesTheLine(line)
except Exception, e:
# handle the exception somehow (for example, log the trace) and raise the same exception again
raw_input("Press Enter to close window")
raise e
finally:
f.close()
The loop checks if there is a new line(s) since last time file was read - if there is, it's read and passed to the functionThatAnalisesTheLine function. If not, script waits 1 second and retries the process.

can't assign to operator while using argparse

So i was trying to do project based on argparse. And actually I copied all the code down below from sentdex, who has a channel on Youtube.
But for some reason code of mine doesn't work and his does.
I'd be really happy if someone helped me, because it's so pissing off)
import argparse
import sys
def main():
parser=argparse.ArgumentParser()
parser.add_argument('--x', type=float,default=1.0,
help='What is the first number?')
parser.add_argument('--y', type=float,default=1.0,
help='What is the second number?')
parser.add_argument('--operation', type=str,default='sub',
help='What operation? (add, sub, )')
args=parser.parse_args()
sys.stdout.write(str(calc(args)))
def calc(args):
operation=args.operation
x = args.x
y = args.y
if operation == 'add':
return x + y
elif operation == 'sub':
return x - y
if __name__ =='__main__':
main()
#console:
--x=2 --y=4 --operation=sub
File "<ipython-input-1-f108b29d54dc>", line 1
--x=2 --y=4 --operation=sub
^
SyntaxError: can't assign to operator
argparse parses sys.argv, which is meant to be initialized from running the script in the command line, but you're running this from iPython, so it's treating sub as a built-in operator function.
You should either run this as a script from the command line, or modify args=parser.parse_args() to:
args=parser.parse_args(['--x', '2', '--y', '4', '--operation', 'sub'])
if you just want to test it without running the script from the command line.

With using String instead of Try/Except prevent crashing- How to?

I am writing a code for the wind chill index for an assignment for college.
The prof wants us to prevent the code from crashing upon user input of blank or letters, without using Try/Except Blocks. (He refers to string methods only).
Instead of crashing it should out put an error message eg. ("invalid input, digits only")
I tried utilizing the string.isdigit and string.isnumeric, but it won't accept the negative degrees as integers.
Any suggestions? (code below)
Would another "if" statement work?
Replace the punctuation:
if temperature.replace('-','').replace('.','').isnumeric():
Use an infinite loop and check that everything seems right.
Whenever there's an error, use the continue statement. And when all checks and conversions are done, use the break statement.
import re
import sys
while True:
print("Temperature")
s = sys.stdin.readline().rstrip('\n')
if re.match("^-?[0-9]+(\\.[0-9]+)?$", s) is None:
print("Doesn't look like a number")
continue
if '.' in s:
print("Number will be truncated to integer.")
temp = int(float(s))
if not (-50 <= temp <= 5):
print("Out of range")
continue
break

Resources