Related
I'm writing some GPU code for macOS using the metal crate. In doing so, I allocate a Buffer object by calling:
let buffer = device.new_buffer(num_bytes, MTLResourceOptions::StorageModeShared)
This FFIs to Apple's Metal API, which allocates a region of memory that both the CPU and GPU can access and the Rust wrapper returns a Buffer object. I can then get a pointer to this region of memory by doing:
let data = buffer.contents() as *mut u32
In the colloquial sense, this region of memory is uninitialized. However, is this region of memory "uninitialized" in the Rust sense?
Is this sound?
let num_bytes = num_u32 * std::mem::size_of::<u32>();
let buffer = device.new_buffer(num_bytes, MTLResourceOptions::StorageModeShared);
let data = buffer.contents() as *mut u32;
let as_slice = unsafe { slice::from_raw_parts_mut(data, num_u32) };
for i in as_slice {
*i = 42u32;
}
Here I'm writing u32s to a region of memory returned to me by FFI. From the nomicon:
...The subtle aspect of this is that usually, when we use = to assign to a value that the Rust type checker considers to already be initialized (like x[i]), the old value stored on the left-hand side gets dropped. This would be a disaster. However, in this case, the type of the left-hand side is MaybeUninit<Box>, and dropping that does not do anything! See below for some more discussion of this drop issue.
None of the from_raw_parts rules are violated and u32 doesn't have a drop method.
Nonetheless, is this sound?
Would reading from the region (as u32s) before writing to it be sound (nonsense values aside)? The region of memory is valid and u32 is defined for all bit patterns.
Best practices
Now consider a type T that does have a drop method (and you've done all the bindgen and #[repr(C)] nonsense so that it can go across FFI boundaries).
In this situation, should one:
Initialize the buffer in Rust by scanning the region with pointers and calling .write()?
Do:
let as_slice = unsafe { slice::from_raw_parts_mut(data as *mut MaybeUninit<T>, num_t) };
for i in as_slice {
*i = unsafe { MaybeUninit::new(T::new()).assume_init() };
}
Furthermore, after initializing the region, how does the Rust compiler remember this region is initialized on subsequent calls to .contents() later in the program?
Thought experiment
In some cases, the buffer is the output of a GPU kernel and I want to read the results. All the writes occurred in code outside of Rust's control and when I call .contents(), the pointer at the region of memory contains the correct uint32_t values. This thought experiment should relay my concern with this.
Suppose I call C's malloc, which returns an allocated buffer of uninitialized data. Does reading u32 values from this buffer (pointers are properly aligned and in bounds) as any type should fall squarely into undefined behavior.
However, suppose I instead call calloc, which zeros the buffer before returning it. If you don't like calloc, then suppose I have an FFI function that calls malloc, explicitly writes 0 uint32_t types in C, then returns this buffer to Rust. This buffer is initialized with valid u32 bit patterns.
From Rust's perspective, does malloc return "uninitialized" data while calloc returns initialized data?
If the cases are different, how would the Rust compiler know the difference between the two with respect to soundness?
There are multiple parameters to consider when you have an area of memory:
The size of it is the most obvious.
Its alignment is still somewhat obvious.
Whether or not it's initialized -- and notably, for types like bool whether it's initialized with valid values as not all bit-patterns are valid.
Whether it's concurrently read/written.
Focusing on the trickier aspects, the recommendation is:
If the memory is potentially uninitialized, use MaybeUninit.
If the memory is potentially concurrently read/written, use a synchronization method -- be it a Mutex or AtomicXXX or ....
And that's it. Doing so will always be sound, no need to look for "excuses" or "exceptions".
Hence, in your case:
let num_bytes = num_u32 * std::mem::size_of::<u32>();
assert!(num_bytes <= isize::MAX as usize);
let buffer = device.new_buffer(num_bytes, MTLResourceOptions::StorageModeShared);
let data = buffer.contents() as *mut MaybeUninit<u32>;
// Safety:
// - `data` is valid for reads and writes.
// - `data` points to `num_u32` elements.
// - Access to `data` is exclusive for the duration.
// - `num_u32 * size_of::<u32>() <= isize::MAX`.
let as_slice = unsafe { slice::from_raw_parts_mut(data, num_u32) };
for i in as_slice {
i.write(42); // Yes you can write `*i = MaybeUninit::new(42);` too,
// but why would you?
}
// OR with nightly:
as_slice.write_slice(some_slice_of_u32s);
This is very similar to this post on the users forum mentioned in the comment on your question. (here's some links from that post: 2 3)
The answers there aren't the most organized, but it seems like there's four main issues with uninitialized memory:
Rust assumes it is initialized
Rust assumes the memory is a valid bit pattern for the type
The OS may overwrite it
Security vulnerabilities from reading freed memory
For #1, this seems to me to not be an issue, since if there was another version of the FFI function that returned initialized memory instead of uninitialized memory, it would look identical to rust.
I think most people understand #2, and that's not an issue for u32.
#3 could be a problem, but since this is for a specific OS you may be able to ignore this if MacOS guarantees it does not do this.
#4 may or may not be undefined behavior, but it is highly undesirable. This is why you should treat it as uninitialized even if rust thinks it's a list of valid u32s. You don't want rust to think it's valid. Therefore, you should use MaybeUninit even for u32.
MaybeUninit
It's correct to cast the pointer to a slice of MaybeUninit. Your example isn't written correctly, though. assume_init returns T, and you can't assign that to an element from [MaybeUninit<T>]. Fixed:
let as_slice = unsafe { slice::from_raw_parts_mut(data as *mut MaybeUninit<T>, num_t) };
for i in as_slice {
i.write(T::new());
}
Then, turning that slice of MaybeUninit into a slice of T:
let init_slice = unsafe { &mut *(as_slice as *mut [MaybeUninit<T>] as *mut [T]) };
Another issue is that &mut may not be correct to have at all here since you say it's shared between GPU and CPU. Rust depends on your rust code being the only thing that can access &mut data, so you need to ensure any &mut are gone while the GPU accesses the memory. If you want to interlace rust access and GPU access, you need to synchronize them somehow, and only store *mut while the GPU has access (or reacquire it from FFI).
Notes
The code is mainly taken from Initializing an array element-by-element in the MaybeUninit doc, plus the very useful Alternatives section from transmute. The conversion from &mut [MaybeUninit<T>] to &mut [T] is how slice_assume_init_mut is written as well. You don't need to transmute like in the other examples since it is behind a pointer. Another similar example is in the nomicon: Unchecked Uninitialized Memory. That one accesses the elements by index, but it seems like doing that, using * on each &mut MaybeUninit<T>, and calling write are all valid. I used write since it's shortest and is easy to understand. The nomicon also says that using ptr methods like write is also valid, which should be equivalent to using MaybeUninit::write.
There's some nightly [MaybeUninit] methods that will be helpful in the future, like slice_assume_init_mut
In vulkano, to create a CPUAccessibleBuffer you need give it some data and the CPUAccessibleBuffer::from_data function requires the data to have the 'static lifetime.
I have some data in &[u8] array (created at runtime) that I would like to pass to that function.
However, it errors with this message
argument requires that `data` is borrowed for `'static`
So how can I make the lifetime of the data 'static ?
You should use CpuAccessibleBuffer::from_iter instead, it does the same thing but does not require the collection to be Copy or 'static:
let data: &[u8] = todo!();
let _ = CpuAccessibleBuffer::from_iter(
device,
usage,
host_cached,
data.iter().copied(), // <--- pass like so
);
Or if you actually have a Vec<u8>, you can pass it directly:
let data: Vec<u8> = todo!();
let _ = CpuAccessibleBuffer::from_iter(
device,
usage,
host_cached,
data, // <--- pass like so
);
If you really must create the data at runtime, and you really need to last for 'static, then you can use one of the memory leaking methods such as Box::leak or Vec::leak to deliberately leak a heap allocation and ensure it is never freed.
While leaking memory is normally something one avoids, in this case it's actually a sensible thing to do. If the data must live forever then leaking it is actually the correct thing to do, semantically speaking. You don't want the memory to be freed, not ever, which is exactly what happens when memory is leaked.
Example:
fn require_static_data(data: &'static [u8]) {
unimplemented!()
}
fn main() {
let data = vec![1, 2, 3, 4];
require_static_data(data.leak());
}
Playground
That said, really think over the reallys I led with. Make sure you understand why the code you're calling wants 'static data and ask yourself why your data isn't already 'static.
Is it possible to create the data at compile time? Rust has a powerful build time macro system. It's possible, for example, to use include_bytes! to read in a file and do some processing on it before it's embedded into your executable.
Is there another API you can use, another function call you're not seeing that doesn't require 'static?
(These questions aren't for you specifically, but for anyone who comes across this Q&A in the future.)
If the data is created at runtime, it can't have a static lifetime. Static means that data is present for the whole lifetime of the program, which is necessary in some contexts, especially when threading is involved. One way for data to be static is, as Paul already answered, explicitly declaring it as such, i.e.:
static constant_value: i32 = 0;
However, there's no universally applicable way to make arbitrary data static. This type of inference is made at compile-time by the borrow checker, not by the programmer.
Usually if a function requires 'static (type) arguments (as in this case) it means that anything less could potentially be unsafe, and you need to reorganize the way data flows in and out of your program to provide this type of data safely. Unfortunately, that's not something SO can provide within the scope of this question.
Make a constant with static lifetime:
static NUM: i32 = 18;
Often times in embedded setting we need to declare static structs (drivers etc) so that
their memory is known and assigned at compile time.
Is there any way to achieve something similar in rust?
For example, I want to have a uart driver struct
struct DriverUart{
...
}
and an associated impl block.
Now, I want to avoid having a function named new(), and instead, I want to somewhere allocate this memory a-priori (or to have a new function that I can call statically outside
any code block).
In C I would simply put an instantiation of this struct in some header file and it will be statically allocated and globally available.
I haven't found any thing similar in rust.
If it is not possible then why? and what is the best why we can achieve something similar?
Thanks!
Now, I want to avoid having a function named new(), and instead, I want to somewhere allocate this memory a-priori (or to have a new function that I can call statically outside any code block). In C I would simply put an instantiation of this struct in some header file and it will be statically allocated and globally available. I haven't found any thing similar in rust. If it is not possible then why? and what is the best why we can achieve something similar?
https://doc.rust-lang.org/std/keyword.static.html
You can do the same in Rust, without the header, as long as all the elements are const:
struct DriverUart {
whatever: u32
}
static thing: DriverUart = DriverUart { whatever: 5 };
If you need to evaluate non-const expressions, then that obviously will not work and you'll need to use something like lazy_static or once_cell to instantiate simili-statics.
And of course, what with Rust being a safe languages and statics being shared state, mutable statics are wildly unsafe if not mitigated via thread-safe interior-mutability containers (e.g. an atomic, or a Mutex though those are currently non-const, and it's unclear if they can ever be otherwise), a static is considered to always be shared between threads.
Take a look at the following simple example:
use std::rc::Rc;
struct MyStruct {
a: i8,
}
fn main() {
let mut my_struct = MyStruct { a: 0 };
my_struct.a = 5;
let my_struct_rc = Rc::new(my_struct);
println!("my_struct_rc.a = {}", my_struct_rc.a);
}
The official documentation of Rc says:
The type Rc<T> provides shared ownership of a value of type T,
allocated in the heap.
Theoretically it is clear. But, firstly my_struct is not immediately wrapped into Rc, and secondly MyStruct is a very simple type. I can see 2 scenarios here.
When my_struct is moved into the Rc the memory content is literally copied from the stack to the heap.
The compiler is able to resolve that my_struct will be moved into the Rc, so it puts it on the heap from the beginning.
If number 1 is true, then there might be a hidden performance bottleneck as when reading the code one does not explicitly see memory being copied (I am assuming MyStruct being much more complex).
If number 2 is true, I wonder whether the compiler is always able to resolve such things. The provided example is very simple, but I can imagine that my_struct is much more complex and is mutated several times by different functions before being moved to the Rc.
Tl;dr It could be either scenario, but for the most part, you should just write code in the most obvious way and let the compiler worry about it.
According to the semantics of the abstract machine, that is, the theoretical model of computation that defines Rust's behavior, there is always a copy. In fact, there are at least two: my_struct is first created in the stack frame of main, but then has to be moved into the stack frame of Rc::new. Then Rc::new has to create an allocation and move my_struct a second time, from its own stack frame into the newly allocated memory*. Each of these moves is conceptually a copy.
However, this analysis isn't particularly useful for predicting the performance of code in practice, for three reasons:
Copies are actually pretty darn cheap. Moving my_struct from one place to another may actually be much cheaper, in the long run, than referencing it with a pointer. Copying a chunk of bytes is easy to optimize on modern processors; following a pointer to some arbitrary location is not. (Bear in mind also that the complexity of the structure is irrelevant because all moves are bytewise copies; for instance, moving any Vec is just copying three usizes regardless of the contents.)
If you haven't measured the performance and shown that excessive copying is a problem, you must not assume that it is without evidence: you may accidentally pessimize instead of optimizing your code. Measure first.
The semantics of the abstract machine is not the semantics of your real machine. The whole point of an optimizing compiler is to figure out the best way to transform one to the other. Under reasonable assumptions, it's very unlikely that the code here would result in 2 copies with optimizations turned on. But how the compiler eliminates one or both copies may be dependent on the rest of the code: not just on the snippet that contains them but on how the data is initialized and so forth. Real machine performance is complicated and generally requires analysis of more than just a few lines at a time. Again, this is the whole point of an optimizing compiler: it can do a much more comprehensive analysis, much faster than you or I can.
Even if the compiler leaves a copy "on the table", you shouldn't assume without evidence that removing the copy would make things better simply because it is a copy. Measure first.
It probably doesn't matter anyway, in this case. Requesting a new allocation from the heap is likely† more expensive than copying a bunch of bytes from one place to another, so fiddling around with 1 fast copy vs. no copies while ignoring a (plausible) big bottleneck is probably a waste of time. Don't try to optimize things before you've profiled your application or library to see where the most performance is being lost. Measure first.
See also
Questions about overflowing the stack by accidentally putting large data on it (to which the solution is usually to use Vec instead of an array):
How to allocate arrays on the heap in Rust 1.0?
Thread '<main>' has overflowed its stack when allocating a large array using Box
* Rc, although part of the standard library, is written in plain Rust code, which is how I analyze it here. Rc could theoretically be subject to guaranteed optimizations that aren't available to ordinary code, but that doesn't happen to be relevant to this case.
† Depending at least on the allocator and on whether new memory must be acquired from the OS or if a recently freed allocation can be re-used.
You can just test what happens:
Try to use my_struct after creating an Rc out of it. The value has been moved, so you can't use it.
use std::rc::Rc;
struct MyStruct {
a: i8,
}
fn main() {
let mut my_struct = MyStruct { a: 0 };
my_struct.a = 5;
let my_struct_rc = Rc::new(my_struct);
println!("my_struct_rc.a = {}", my_struct_rc.a);
// Add this line. Compilation error "borrow of moved value"
println!("my_struct.a = {}", my_struct.a);
}
Make your struct implement the Copy trait, and it will be automatically copied into the Rc::new function. Now the code above works, because the my_struct variable is not moved anywhere, just copied.
#[derive(Clone, Copy)]
struct MyStruct {
a: i8,
}
The compiler is able to resolve that my_struct will be moved into the Rc, so it puts it on the heap from the beginning.
Take a look at Rc::new source code (removed the comment which is irrelevant).
struct RcBox<T: ?Sized> {
strong: Cell<usize>,
weak: Cell<usize>,
value: T,
}
// ...
pub fn new(value: T) -> Rc<T> {
Self::from_inner(Box::into_raw_non_null(box RcBox {
strong: Cell::new(1),
weak: Cell::new(1),
value,
}))
}
It takes the value you pass to it, and creates a Box, so it's always put on the heap. This is plain Rust and I don't think it performs too many sophisticated optimizations, but that may change.
Note that "move" in Rust may also copy data implicitly, and this may depend on the current compiler's behavior. In that case, if you are concerned about performance you can try to make the struct as small as possible, and store some information on the heap. For example when a Vec<T> is moved, as far as I know it only copies the capacity, length and pointer to the heap, but the actual array which is on the heap is not copied element by element, so only a few bytes are copied when moving a vector (assuming the data is copied, because that's also subject to compiler optimizations in case copying is not actually needed).
In a mixture of Rust and C code for a microcontroller, I have a Rust data structure that I have to make known to the C part of my program. I got this working.
pub struct SerialPort {
// ... some attributes ...
}
I tried to refactor the Rust code and wanted to generate the Rust structure in a function that also registers the callbacks in my C Code.
pub fn setup_new_port() -> SerialPort {
let port = SerialPort::new();
port.register_with_c_code();
port
}
This doesn't work because Rust will move the content of the memory of my variable of type SerialPort to a different location when the function returns. The addresses registered in the C code point to the (now freed) stackframe of setup_new_port() while it got moved to the stack frame of the caller, so my C code will access invalid addresses.
Is there any trait that I can implement that gets notified when a move happens? I could adjust the addresses registered in my C code in the implementation of the trait.
I know that I could prevent the move from happening by allocating my structure on the heap, but I would like to avoid this as the code runs on a microcontroller and dynamic memory allocation might not always be present.
No, by design.
Rust was specifically designed without so-called move constructors, in Rust a move is a bitwise copy, allowing many optimizations:
such as the use of C memcpy and realloc,
optimizations based on the fact that no panic! can be called during a move,
...
Actually, there are proposals in C++ to retrofit such a design (is_relocatable), and performance is the main driver.
So what?
Do it like Mutex do! That is, Box whatever should not move, and isolate it in an opaque struct so that nobody can move the content out of the box.
If heap allocation is not available... then you may want to look into PinMut, or otherwise borrow the structure. What is borrowed cannot be moved.
The only solution I see (I do not says that it is the only solution) is to have an arena in the stack, or another kind of placeholder:
#[derive(Default)]
pub struct SerialPort {
_dummy: i32,
}
pub fn setup_new_port(placeholder: &mut Option<SerialPort>) -> &SerialPort {
let port = SerialPort::default();
std::mem::replace(placeholder, Some(port));
let port = placeholder.as_ref().unwrap();
println!("address: {:p}", port);
//port.register_with_c_code();
port
}
fn main() {
let mut placeholder = None;
let port = setup_new_port(&mut placeholder);
println!("address: {:p}", port);
}
The two println! lines print the same value.
I searched in the internet to find a crate that implements an arena in the stack but found nothing so far.
I would split it up.
I'd create an instance of the Serialport somewhere (on the stack) and afterwards call register_with_c_code(). Also I would impl Drop for Serialport, so the c_code would be detached, when the Serialport goes out of scope.
For your Serialport interface, I would not accept any move, but only (mutable) references.