Get Total Count using aggregate + facet using Mongo - node.js

I want to group my data based on event date with pagination. However what i am getting is whole record totalcount instead of eventDate count. because of this UI part is not working properly. Here is my collection sample:
{
"_id" : ObjectId("5fc4d0009a25e8cfbe306381"),
"eventDate" : ISODate("2021-11-29T01:00:00.000Z"),
"team1" : {
"tName" : "Chicago Bears",
},
"team2" : {
"tName" : "Green Bay Packers",
}
}
{
"_id" : ObjectId("5fc4d0019a25e8cfbe3063ff"),
"eventDate" : ISODate("2021-11-30T01:00:00.000Z"),
"team1" : {
"tName" : "Nashville SC",
},
"team2" : {
"tName" : "Columbus Crew",
}
}
{
"_id" : ObjectId("5fc4d0019a25e8cfbe3063f4"),
"eventDate" : ISODate("2021-11-30T01:00:00.000Z"),
"team1" : {
"tName" : "yyyy",
},
"team2" : {
"tName" : "xxxx",
}
}
here is my query:
db.getCollection('game').aggregate([
{ $addFields: { "newEventDate": {$dateToString:{ format: "%Y-%m-%d", date: "$eventDate" }}}},
{ "$match": {
"eventDate": { $gte: new Date() }
}
},
{ "$facet": {
"resultData": [
{ "$match": {
"eventDate": { $gte: new Date() }
}
},
{ "$group": {
"_id": "$newEventDate",
"games": {$push: {
team1:"$team1",
team2:"$team2"
}}
}
},
{ $sort: {eventDate: 1} },
{
$limit: 1
}
],
"pageInfo": [
{ "$count": "totalRecords" }
]}
}
]);
After executing this query this is my response:
{
"resultData" : [
{
"_id" : "2021-11-29",
"games" : [
{
"awayTeam" : {
"tName" : "Chicago Bears"
},
"homeTeam" : {
"tName" : "Green Bay Packers"
}
},
]
}
],
"pageInfo" : [
{
"totalRecords" : 3 **[here i want 2 ie total event date]**
}
]
}

$match your condition
move your $group stage outside from $facet, convert your date from string inside group, add you date in group stage because we are going to sort in next stage
$sort by eventDate ascending order
$facet, first get single record using $limit, and second part get total count of the record using $count
db.collection.aggregate([
{ $match: { eventDate: { $gte: new Date() } } },
{
$group: {
_id: {
$dateToString: {
format: "%Y-%m-%d",
date: "$eventDate"
}
},
eventDate: { $first: "$eventDate" },
games: {
$push: {
team1: "$team1",
team2: "$team2"
}
}
}
},
{ $sort: { eventDate: 1 } },
{
$facet: {
resultData: [{ $limit: 1 }],
pageInfo: [{ $count: "totalRecords" }]
}
}
])
Playground

Related

MongoDB aggregation: FieldPath may not start with $

This MongoDB aggregation is failing:
Attendance.aggregate([
{ $match: { cohort_id: cohort_id} },
{ $unwind: "$absences" },
{
$group: {
_id: {
term: "$absences.term",
$function:
{
body: function (day) {
return day.getDay();
},
args: ["$absences.formatted_date.day"],
lang: "js",
},
},
count: { $sum: 1 },
},
},
{ $sort: { count: 1 } },
])
with this error:
uncaught exception: Error: command failed: {
"ok" : 0,
"errmsg" : "FieldPath field names may not start with '$'. Consider using $getField or $setField.",
"code" : 16410,
"codeName" : "Location16410"
} with original command request: {
"aggregate" : "attendances",
"pipeline" : [
{
"$match" : {
"cohort_id" : "61858e13dc5e0d1ce0238abd"
}
},
{
"$unwind" : "$absences"
},
{
"$group" : {
"_id" : {
"term" : "$absences.term",
"$function" : {
"body" : function (day) { return day.getDay(); },
"args" : [
"$absences.formatted_date.day"
],
"lang" : "js"
}
},
"count" : {
"$sum" : 1
}
}
},
{
"$sort" : {
"count" : 1
}
}
],
"cursor" : {
},
"lsid" : {
"id" : UUID("b4505aa0-e65e-46cd-8e31-03e4ecdbfe3b")
}
}
...
Not the most helpful error message.
Where am I referencing a field name wrong? Looks like it's expecting a field name without $ somewhere, but I can't seem to find where.
I've seen similar posts about this error, but they generally have to do with $project and $sort which does not seem to be the problem here
Thank you!
It considers $function as field name. I think it should be like this:
{
$group: {
_id: {
term: "$absences.term",
day: {
$function: {
body: function (day) {
return day.getDay();
},
args: ["$absences.formatted_date.day"],
lang: "js",
},
},
count: { $sum: 1 },
},
}
Is this a school homework? day.getDay() sounds to be a very simple function which should be available native in MongoDB Query Language.
Found a solution that's simpler and that works:
Attendance.aggregate([
{ $match: { cohort_id: cohort_id} },
{ $unwind: "$absences" },
{
$group: {
_id: {
term: "$absences.term",
day: {
$dayOfWeek: "$absences.formatted_date.day"
},
},
count: { $sum: 1 },
},
},
{ $sort: { count: 1 } },
])

$out ,$projection in mongodb

i want to save records in a new collection using either $out or $merge.
**/////collection 2- reservationdeatils////**
"_id":ObjectId("5e4a898947363e964a886420"),
"phoneNo" : 98765#####,
"name" : "name1",
"userId":ObjectId("5e1efac668c3c811c83263cc"),
"approversId":ObjectId("5e1efad268c3c811c83263cd")
"bookedForDate":ISODate("2020-02-20T07:23:36.130Z"),
"bookingDetails" : [
{ "_id" : ObjectId("5e44f471d1868d2a54aac12d"),
"seatsBooked" : 15,
"floorId" : "#IKE01",
},
{ "_id" : ObjectId("5e44f471d1868d2a54aac12c"),
"seatsBooked" : 35,
"floorId" : "#HKE04",
}
],
**/////collection 2-priceDetails////**
{
"_id" : ObjectId("5e1efb0168c3c811c83263ce"),
"floorId" : "#IKE01",
"weekday" : "monday",
"pricePoint" : 589,
}
{
"_id" : ObjectId("5e2694db54e532a4eb92b477"),
"floorId" : "#IKE02",
"weekday" : "thursday",
"pricePoint" : 699
}
{
"_id" : ObjectId("5e2694f954e532a4eb92b478"),
"floorId" : "#HKE04",
"weekday" : "monday",
"pricePoint" : 579
}
**/////collection 3- discount////**
{
"_id" : ObjectId("5e427de64617181a4ce38893"),
"userId" : ObjectId("5e3d05ba964d0e06c4bb0f07"),
"approversId" : ObjectId("5e1d82156a67173cb877f67d"),
"floorId" : "#IKE01",
"weekday" : "monday",
"discount" : 20%,
},
{
"_id" : ObjectId("5e4281e7fec2e01a4c60b406"),
"userId" : ObjectId("5e1efac668c3c811c83263cc"),
"approversId" : ObjectId("5e1efad268c3c811c83263cd"),
"floorId" : "#IKE01",
"weekday" : "monday",
"discount" : 24%,
}
Now below is the query i have tried :
db.reservationdeatils.aggregate([
{
'$match': {
'approverId': ObjectId('5e1efad268c3c811c83263cd'),
'userId': ObjectId('5e1efac668c3c811c83263cc'),
'bookedForDate': ISODate("2020-02-11T18:30:00Z"),
}
},
{
'$unwind': {
'path': '$bookingDetails',
},
},
{
$lookup:
{
from: 'priceDetails',
let: { floorId: '$bookingDetails.floorId' },
pipeline: [
{
$match: {
weekday: 'monday',
$expr: {
$eq: ["$floorId", "$$floorId"]
}
}
}
], as: 'priceDetails'
}
},
{ '$unwind': '$priceDetails' },
{
$lookup:
{
from: 'discount',
let: { floorId: '$bookingDetails.floorId' },
pipeline: [
{
$match: {
weekday: 'monday',
$expr: {
$eq: ["$floorId", "$$floorId"]
}
}
}
], as: 'discounts'
}
},
{ '$unwind': '$discounts' },
{
'$group': {
'_id': {
'floorId': '$bookingDetails.floorId',
'date': '$bookedForDate',
'price': '$priceDetails.pricePoint',
'discount': '$discounts.discount'
},
'seatsBooked': {
'$sum': '$bookingDetails.seatsBooked'
},
}
},
{
'$project': {
'amount': {
'$multiply':
[
'$seatsBooked',
{'$subtract':
['$_id.pricePoint',
{ '$multiply':
['$_id.pricePoint',
{ '$divide':
['$_id.discount', 100]
}]
}]
}]
},
},
},
{
$group: {
_id: null,
totalAmount: {
$sum: "$amount"
}
}
},
{
'$project': {
_id:0,
totalAmount:1,
bookedForDate:1,
'floorId':'$priceDetails.floorId'
}
},{'$merge':'invoice'}
]).pretty()
i have been able to achieve the totalAmount but what i want to achieve is that i want to save these fields into "invoice" collection "userId","approversId","floorId","sum","totalSum","bookedForDate","name" BUT 1:whenever i use $out instead of $merge the previous document gets replaces which i dont want, 2: if i use $merge everytime i run the query a new document is created and that too only with _id:ObjectId(5e4a899c47363e964a88642f),totalBill:#### these fields , any suggestion how can i achieve this
You are going in a good direction you just need to look at the $group aggregation.
One more thing I have used the discount as int value, not in percentage.
"discount" : 24
I have updated the query:
db.reservationdeatils.aggregate([
{
$match: {
"userId" : ObjectId("5e1efac668c3c811c83263cc"),
"approversId" : ObjectId("5e1efad268c3c811c83263cd"),
"bookedForDate" : ISODate("2020-02-20T07:23:36.130Z")
}
},
{
$unwind: {
path: "$bookingDetails",
},
},
{
$lookup:
{
from: "priceDetails",
let: { floorId: "$bookingDetails.floorId" },
pipeline: [
{
$match: {
weekday: "monday",
$expr: {
$eq: ["$floorId", "$$floorId"]
}
}
}
],
as: "priceDetails"
}
},
{
$unwind: "$priceDetails"
},
{
$lookup:
{
from: "discount",
let: { floorId: "$bookingDetails.floorId" },
pipeline: [
{
$match: {
weekday: "monday",
$expr: {
$eq: ["$floorId", "$$floorId"]
}
}
}
],
as: "discounts"
}
}
,
{
$unwind: "$discounts"
}
,
{
$group: {
"_id": {
"floorId": "$bookingDetails.floorId",
"date": "$bookedForDate",
"price": "$priceDetails.pricePoint",
"discount": "$discounts.discount"
},
"price":{
$first:"$priceDetails.pricePoint"
},
"discount":{
$first:"$discounts.discount"
},
"seatsBooked": {
$sum: "$bookingDetails.seatsBooked"
},
}
}
,
{
$project: {
"amount": {
$multiply:
[
"$seatsBooked",
{
$subtract:[
"$price",
{
$multiply:[
"$price",
{
$divide:[
"$discount",
100
]
}
]
}
]
}
]
},
},
}
,
{
$group: {
"_id": null,
"totalAmount": {
$sum: "$amount"
}
}
},
{
$project: {
"_id":0,
"totalAmount":1,
"bookedForDate":1,
"floorId":"$priceDetails.floorId"
}
},
{
$out:"invoice"
}
]).pretty()
This will help you.

MongoDB $addToSet to deep nested array of object

Below is my data structure.
{
"_id" : "room1",
"members" : [
{
"_id" : "member1",
"name" : "Michael",
"payments" : [
{
"month": "2018/09"
"amount": "20"
}
]
},
]
}
I want to push below object to Michael's payments
{
"month": "2018/09",
"amount": "5000"
}
In this case, What I want to is overwrite object, because month: "2018/09" already exist. Like below :
{
"_id" : "room1",
"members" : [
{
"_id" : "member1",
"name" : "Michale",
"payments" : [
{
"month": "2018/09"
"amount": "5000"
}
]
},
]
}
And, In case when I want to push object that not exist same month in payments, I want to add this object to payments.
{
"month": "2018/10",
"amount": "2000"
}
So the expected result is
{
"_id" : "room1",
"members" : [
{
"_id" : "member1",
"payments" : [
{
"month": "2018/09"
"amount": "5000"
},
{
"month": "2018/10"
"amount": "2000"
}
]
},
]
}
I tried like below, but it's not working. My code generate duplicated new month object every time I tried. How can I do this properly?
Rooms.update(
{
_id: "room1",
"members._id": "member1",
"members.$.payments": {
$not: {
$elemMatch: {
month: req.body.month
}
}
}
},
{
$addToSet: {
"members.$.payments": {
month: req.body.month,
amount: req.body.value
}
}
},
{ multi: true }, function (err, result) {
console.log(result)
}
)
You can use below command to add without duplicity either in months or amount
Rooms.update(
{
_id: "room1",
"members._id": "member1"
},
{
$addToSet: {
"members.$.payments": {
month: req.body.month,
amount: req.body.value
}
}
},function (err, result) {
console.log(result)
}
)
So I heard I have to determine duplication myself, so below is my code... it's writing now.,,
So Finally this is my code
Clubs.findOne({
uid: req.params.club_id,
"members._id": mongoose.Types.ObjectId(req.params.member_uid)
}, function(err, club){
let member = club.members.filter(el => {
if(el._id.equals(req.params.member_uid)) return el
})
let duplicated = false;
member[0].payments.map(el => {
if(el.month === req.body.month) duplicated = true
})
if(duplicated){
Clubs.update(
{
uid: req.params.club_id,
"members._id": mongoose.Types.ObjectId(req.params.member_uid),
},
{
$set: {
["members.$.payments."+index+".amount"] : req.body.value
}
},
function (err, result, third) {
if (err) throw err
console.log('result')
console.log(result)
res.json({})
}
)
} else {
Clubs.update(
{
uid: req.params.club_id,
"members._id": mongoose.Types.ObjectId(req.params.member_uid),
},
{
$push: {
"members.$.payments" : {
month : req.body.month,
amount: req.body.value
}
}
},
function (err, result, third) {
if (err) throw err
console.log('result')
console.log(result)
res.json({})
}
)
}
})
Perhaps consider changing the structure of your nested array to an object? So change this
{
"payments": [{
"month": "2018/09"
"amount": "5000"
},
{
"month": "2018/10"
"amount": "2000"
}
]
}
to this:
{
"payments": {
"2018/09": "5000",
"2018/10": "2000"
}
}
Then you can do a simple update:
Rooms.update({
_id: "room1",
"members._id": "member1",
"members.payments": {
$exists: true
}
}, {
$set: {
"members.payments." + req.body.month: req.body.value
}
},
)

how to perform group by in mongodb

I'm having this data in MongoDB, I want to perform group by on this data to get all the tracking numbers, under the same id in a single array format.
* 1 */
{
"_id" : ObjectId("597056182a93692b4c7691bf"),
"Sid":1,
"Carriers" : [
{
"Tracking" : [
{
"TrackingNo" : "121_dom"
}
]
},
{
"Tracking" : [
{
"TrackingNo" : "779591314278"
},
{
"TrackingNo" : "779591314039"
},
{
"TrackingNo" : "779591314231"
}
]
}
]
}
/* 2 */
{
"_id" : ObjectId("597057338c65c002e4285fb3"),
"Sid":2,
"Carriers" : [
{
"Tracking" : [
{
"TrackingNo" : "122_dom"
}
]
},
{
"Tracking" : [
{
"TrackingNo" : "77959131427"
},
{
"TrackingNo" : "77959131403"
}
]
}
]
}
/* 3 */
{
"_id" : ObjectId("5980ae7ecc71b581b626d20b"),
"Sid":3,
"Carriers" : [
{
"Tracking" : [
{
"TrackingNo" : "123_dom"
}
]
},
{
"Tracking" : [
{
"TrackingNo" : "77959131408"
},
{
"TrackingNo" : "779591314059"
},
{
"TrackingNo" : "779591315551"
}
]
}
]
}
I.e on performing group by operation on _id, which shows all tracking numbers under the same _Id in a single array, means the result set will be like this :
{
"_id" : ObjectId("597056182a93692b4c7691bf"),
"Sid":1,
"Carriers" : [
{
"Tracking" : [
{
"TrackingNo" : "121_dom"
}
{
"TrackingNo" : "779591314278"
},
{
"TrackingNo" : "779591314039"
},
{
"TrackingNo" : "779591314231"
}
]
}
]
}
As you have array within array, you first need to unwind twice and then group again. Following query should work. You need to project additional fields in $group and $project as required.
db.shipments.aggregate(
{$unwind:'$Carriers'},
{$unwind: '$Carriers.Tracking'},
{$group: {_id:'$_id', c: {$push: '$Carriers.Tracking'}}},
{$project:{Carriers: {Tracking: '$c'}}}
)
According to description as mentioned in above question please try executing following aggregate query into MongoDB shell as a solution to above mentioned question.
db.shipments.aggregate(
// Pipeline
[
// Stage 1
{
$unwind: {
path: '$Carriers'
}
},
// Stage 2
{
$unwind: {
path: '$Carriers.Tracking'
}
},
// Stage 3
{
$group: {
_id: {
_id: '$_id',
Sid: '$Sid'
},
Carriers: {
$addToSet: {
TrackingNo: '$Carriers.Tracking.TrackingNo'
}
}
}
},
// Stage 4
{
$group: {
_id: '$_id',
Carriers: {
$addToSet: {
Tracking: '$Carriers'
}
}
}
},
// Stage 5
{
$project: {
_id: '$_id._id',
Sid: '$_id.Sid',
Carriers: '$Carriers'
}
}
]
);

MongoDB/Mongoose - Querying an array of objects by date

I have the following metrics collection:
{
name: "Hello",
values: [
{
value: 2629,
date: "2016-10-28T07:00:00.000Z",
_id: "58453abfef7aaa15ac1fdee8"
},
{
value: 1568,
date: "2016-10-29T07:00:00.000Z",
_id: "58453abfef7aaa15ac1fdee7"
},
{
value: 1547,
date: "2016-10-30T07:00:00.000Z",
_id: "58453abfef7aaa15ac1fdee6"
},
{
value: 1497,
date: "2016-10-31T07:00:00.000Z",
_id: "58453abfef7aaa15ac1fdee5"
},
{
value: 3031,
date: "2016-11-01T07:00:00.000Z",
_id: "58453abfef7aaa15ac1fdee4"
},
{
value: 2559,
date: "2016-11-02T07:00:00.000Z",
_id: "58453abfef7aaa15ac1fdee3"
},
{
value: 2341,
date: "2016-11-03T07:00:00.000Z",
_id: "58453abfef7aaa15ac1fdee2"
},
{
value: 2188,
date: "2016-11-04T07:00:00.000Z",
_id: "58453abfef7aaa15ac1fdee1"
},
{
value: 3280,
date: "2016-11-05T07:00:00.000Z",
_id: "58453abfef7aaa15ac1fdee0"
},
{
value: 4638,
date: "2016-11-06T07:00:00.000Z",
_id: "58453abfef7aaa15ac1fdedf"
}
]
},
.... more of the same
What I would like to get is all the values between a custom date range.
I've tried the following query but I still get the entire values array returned:
{
name: "Hello",
values: {
$elemMatch: {
date: {
$lt: "2016-11-03T07:00:00.000Z",
$gt: "2016-10-28T07:00:00.000Z"
}
}
}
}
Maybe I saved my dates in a wrong format ? Any help would be greatly appreciated.
You can run an aggregation pipeline that uses the $filter operator on the values array. The following mongo shell query demonstrates this:
var start = new Date("2016-10-28T07:00:00.000Z"),
end = new Date("2016-11-03T07:00:00.000Z");
db.metrics.aggregate([
{
"$match": {
"name": "Hello",
"values.date": { "$gt": start, "$lt": end }
}
},
{
"$project": {
"name": 1,
"values": {
"$filter": {
"input": "$values",
"as": "value",
"cond": {
"$and": [
{ "$gt": [ "$$value.date", start ] },
{ "$lt": [ "$$value.date", end ] }
]
}
}
}
}
}
])
Sample Output
/* 1 */
{
"_id" : ObjectId("5845453145fda1298fa50db9"),
"name" : "Hello",
"values" : [
{
"value" : 1568,
"date" : ISODate("2016-10-29T07:00:00.000Z"),
"_id" : ObjectId("58453abfef7aaa15ac1fdee7")
},
{
"value" : 1547,
"date" : ISODate("2016-10-30T07:00:00.000Z"),
"_id" : ObjectId("58453abfef7aaa15ac1fdee6")
},
{
"value" : 1497,
"date" : ISODate("2016-10-31T07:00:00.000Z"),
"_id" : ObjectId("58453abfef7aaa15ac1fdee5")
},
{
"value" : 3031,
"date" : ISODate("2016-11-01T07:00:00.000Z"),
"_id" : ObjectId("58453abfef7aaa15ac1fdee4")
},
{
"value" : 2559,
"date" : ISODate("2016-11-02T07:00:00.000Z"),
"_id" : ObjectId("58453abfef7aaa15ac1fdee3")
}
]
}
For MongoDB 3.0, the following workaround applies:
var start = new Date("2016-10-28T07:00:00.000Z"),
end = new Date("2016-11-03T07:00:00.000Z");
db.metrics.aggregate([
{
"$match": {
"name": "Hello",
"values.date": { "$gt": start, "$lt": end }
}
},
{
"$project": {
"name": 1,
"values": {
"$setDifference": [
{
"$map": {
"input": "$values",
"as": "value",
"in": {
"$cond": [
{
"$and": [
{ "$gt": [ "$$value.date", start ] },
{ "$lt": [ "$$value.date", end ] }
]
},
"$$value",
false
]
}
}
},
[false]
]
}
}
}
])
The Aggregation Framework in MongoDB 2.2+ provides an alternative to Map/Reduce. The $unwind operator can be used to separate your values array into a stream of documents that can be matched:
db.tmp.aggregate(
// Start with a $match pipeline which can take advantage of an index and limit documents processed
{ $match : {
name: "Hello",
"values.date": {
$lt: "2016-11-03T07:00:00.000Z",
$gt: "2016-10-28T07:00:00.000Z" }
}},
{ $unwind : "$values" },
{ $match : {
name: "Hello",
"values.date": {
$lt: "2016-11-03T07:00:00.000Z",
$gt: "2016-10-28T07:00:00.000Z" }
}}
)
Sample output:
{
"_id":ObjectId("5845432720ce37bdc7e9ca1c"),
"name":"Hello",
"values":{
"value":1568,
"date":"2016-10-29T07:00:00.000Z",
"_id":"58453abfef7aaa15ac1fdee7"
}
},{
"_id":ObjectId("5845432720ce37bdc7e9ca1c"),
"name":"Hello",
"values":{
"value":1547,
"date":"2016-10-30T07:00:00.000Z",
"_id":"58453abfef7aaa15ac1fdee6"
}
},{
"_id":ObjectId("5845432720ce37bdc7e9ca1c"),
"name":"Hello",
"values":{
"value":1497,
"date":"2016-10-31T07:00:00.000Z",
"_id":"58453abfef7aaa15ac1fdee5"
}
},{
"_id":ObjectId("5845432720ce37bdc7e9ca1c"),
"name":"Hello",
"values":{
"value":3031,
"date":"2016-11-01T07:00:00.000Z",
"_id":"58453abfef7aaa15ac1fdee4"
}
},{
"_id":ObjectId("5845432720ce37bdc7e9ca1c"),
"name":"Hello",
"values":{
"value":2559,
"date":"2016-11-02T07:00:00.000Z",
"_id":"58453abfef7aaa15ac1fdee3"
}
}

Resources