What is the modern usage of the global descriptor table(GTD)? - linux

After a long read, I am really confused.
From what I read:
Modern OS does not use segments at all.
The GDT is used to define a segment in the memory (including constraints).
The page table has a supervisor bit that indicates if the current location is for the kernel.
Wikipedia says that "The GDT is still present in 64-bit mode; a GDT must be defined but is generally never changed or used for segmentation."
Why do we need it at all? And how linux uses it?

Modern OS does not use segments at all.
A modern OS (for 64-bit 80x86) still uses segment registers; it's just that their use is "mostly hidden" from user-space (and most user-space code can ignore them). Specifically; the CPU will determine if the code is 64-bit (or 32-bit or 16-bit) from whatever the OS loads (from GDT or LDT) into CS, interrupts still save CS and SS for the interrupted code (and load them again at iret), GS and/or FS are typically used for thread-local and/or CPU local storage, etc.
The GDT is used to define a segment in the memory (including constraints).
Code and data segments are just one of the things that GDT is used for. The other main use is defining where the Task State Segment is (which is used to find IO port permission map, values to load into CS, SS and RSP when there's a privilege level change caused by an interrupt, etc). It's also still possible for 64-bit code (and 32-bit code/processes running under a 64-bit kernel) to use call gates defined in the GDT, but most operating systems don't use that feature for 64-bit code (they use syscall instead).
The page table has a supervisor bit that indicates if the current location is for the kernel.
Yes. The page table's supervisor bit determines if code running at CPL=3 can/can't access the page (or if the code must be CPL=2, CPL=1 or CPL=0 to access the page).
Wikipedia says that "The GDT is still present in 64-bit mode; a GDT must be defined but is generally never changed or used for segmentation."
Yes - Wikipedia is right. Typically an OS will set up a GDT early during boot (for TSS, CS, SS, etc) and then not have any reason to modify it after boot; and the segment registers aren't used for "segmented memory protection" (but are used for other things - determining code size, if an interrupt handler should return to CPL=0 or not, etc).

Related

How are stack and heap segment managed in x86 without utilizing the segmentation mechanism?

From Understanding the Linux Kernel:
Segmentation has been included in 80x86 microprocessors to encourage programmers to split their applications into logically related entities, such as subroutines or global and local data areas. However, Linux uses segmentation in a very limited way. In fact, segmentation and paging are somewhat redundant, because both can be used to separate the physical address spaces of processes: segmentation can assign a different linear address space to each process, while paging can map the same linear address space into different physical address spaces. Linux prefers paging to segmentation for the following reasons:
Memory management is simpler when all processes use the same segment register values—that is, when they share the same set of linear addresses.
One of the design objectives of Linux is portability to a wide range of architectures; RISC architectures, in particular, have limited support for segmentation.
The 2.6 version of Linux uses segmentation only when required by the 80x86 architecture.
The x86-64 architecture does not use segmentation in long mode (64-bit mode). As the x86 has segments, it is not possible to not use them. Four of the segment registers: CS, SS, DS, and ES are forced to 0, and the limit to 2^64. If so, two questions have been raised:
Stack data (stack segment) and heap data (data segment) are mixed together, then pop from the stack and increase the ESP register is not available.
How does the operating system know which type of data is (stack or heap) in a specific virtual memory address?
How do different programs share the kernel code by sharing memory?
Stack data (stack segment) and heap data (data segment) are mixed together, then pop from the stack and increase the ESP register is not available.
As Peter states in the above comment, even though CS, SS, ES and DS are all treated as having zero base, this does not change the behavior of PUSH/POP in any way. It is no different than any other segment descriptor usage really. You could get overlapping segments even in 32-bit multi-segment mode if you point multiple selectors to the same descriptor. The only thing that "changes" in 64-bit mode is that you have a base forced by the CPU, and RSP can be used to point anywhere in addressable memory. PUSH/POP operations will work as usual.
How does the operating system know which type of data is (stack or heap) in a specific virtual memory address?
User-space programs can (and will) move the stack and heap around as they please. The operating system doesn't really need to know where stack and heap are, but it can keep track of those to some extent, assuming the user-space application does everything according to convention, that is uses the stack allocated by the kernel at program startup and the program break as heap.
Using the stack allocated by the kernel at program startup, or a memory area obtained through mmap(2) with MAP_GROWSDOWN, the kernel tries to help by automatically growing the memory area when its size is exceeded (i.e. stack overflow), but this has its limits. Manual MAP_GROWSDOWN mappings are rarely used in practice (see 1, 2, 3, 4). POSIX threads and other more modern implementations use fixed-size mappings for threads.
"Heap" is a pretty abstract concept in modern user-space applications. Linux provides user-space applications with the basic ability to manipulate the program break through brk(2) and sbrk(2), but this is rarely in a 1-to-1 correspondence with what we got used to call "heap" nowadays. So in general the kernel does not know where the heap of an application resides.
How do different programs share the kernel code by sharing memory?
This is simply done through paging. You could say there is one hierarchy of page tables for the kernel and many others for user-space processes (one for each task). When switching to kernel-space (e.g. through a syscall) the kernel changes the value of the CR3 register to make it point to the kernel's page global directory. When switching back to user-space, CR3 is changed back to point to the current process' page global directory before giving control to user-space code.

Memory available to assembly program in Linux

For fun I am just trying to write a program in assembly for Linux on a laptop with an x86 processor to get some system information. So one of the things I am trying to find is how much memory is available to my program, and where e.g. the stack is and if and how I can allocate additional memory if needed.
Long time ago I did things like this on an Atari ST and there was just a system 'malloc' I could ask memory from and there were functions to find the available memory.
I know Linux is set up differently and I kind of have the whole address space to myself, but I guess there are some memory areas I am not allowed to touch.
And somehow a default stack seems to have been setup.
I researched quite a bit for this, but I can't find any 'assembly' system call. Most people point to linking the C malloc for memory management, but I am not looking for a memory manager. I just want to know the memory boundaries of my program.
I find things like getrlimit, setrlimit, prlimit and brk and sbrk, but those seem to be C functions and not system calls.
What am i missing?
Linux uses virtual memory (and ASLR). Atari ST doesn't use either so it did have a fixed memory map for some OS data structures and code. (Because the OS was in ROM and couldn't be easily updated, some people even documented some internal addresses.)
Linux tries to keep the boundary between kernel and user-space rigid, with a well-defined documented API / ABI for user-space to interact with the kernel via system calls. (e.g. on x86-64, via the syscall instruction). User-space doesn't need to care what's on the other side of that wall, and usually not even where its pages are in virtual memory as long as it has pointers to them.
When glibc malloc wants more pages from the OS, it uses mmap(MAP_ANONYMOUS) or brk to get them, and hand out chunks of them for small calls to malloc. It keeps bookkeeping data structures in user-space (so that's per-process of course).
I know Linux is set up differently and I kind of have the whole address space to myself, but I guess there are some memory areas I am not allowed to touch.
Yeah, every process has its own virtual address space. You can only touch the parts you've allocated, otherwise the resulting page fault will be "invalid" (OS knows there isn't supposed to be a physical page for that virtual page) and will deliver a SIGSEGV signal to your process if you try to read or write it. ("valid" page faults happen because of swap space or lazy allocation / copy-on-write; the kernel updates the HW page tables and returns to user-space for it to re-run the instruction that faulted.)
Also, the kernel claims the high half of virtual address space for its own use. (https://wiki.osdev.org/Higher_Half_Kernel). See also https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt for Linux's x86-64 memory map layout.
I can't find any 'assembly' system call.
mmap and brk are true system calls. See the "notes" section of the brk(2) man page. Section 2 man pages are system calls, section 3 are libc functions.
Of course in C when you call mmap(...), you're actually calling a wrapper function in glibc. glibc provides wrapper functions, not inline asm macros that use the syscall instruction directly.
See also The Definitive Guide to Linux System Calls which explains the asm interface, and also the VDSO pages. Linux maps some kernel memory (read-only) into your user-space process, holding code and data so getpid() and clock_gettime() can run in user-space.
Also various Q&As on Stack Overflow, including What are the calling conventions for UNIX & Linux system calls on i386 and x86-64
So one of the things I am trying to find is how much memory is available to my program
There isn't a system call to query the current memory map of your process. Parsing /proc/self/maps would be your best bet.
See Finding mapped memory from inside a process for some fun ideas on using system calls to scan ranges of virtual address space for mapped pages. e.g. Like Linux's mincore(2) syscall returns -ENOMEM if the specified range contains any unmapped pages.

Linux uses Paging or Segmentation or Both? [duplicate]

I'm reading "Understanding Linux Kernel". This is the snippet that explains how Linux uses Segmentation which I didn't understand.
Segmentation has been included in 80 x
86 microprocessors to encourage
programmers to split their
applications into logically related
entities, such as subroutines or
global and local data areas. However,
Linux uses segmentation in a very
limited way. In fact, segmentation
and paging are somewhat redundant,
because both can be used to separate
the physical address spaces of
processes: segmentation can assign a
different linear address space to each
process, while paging can map the same
linear address space into different
physical address spaces. Linux prefers
paging to segmentation for the
following reasons:
Memory management is simpler when all
processes use the same segment
register values that is, when they
share the same set of linear
addresses.
One of the design objectives of Linux
is portability to a wide range of
architectures; RISC architectures in
particular have limited support for
segmentation.
All Linux processes running in User
Mode use the same pair of segments to
address instructions and data. These
segments are called user code segment
and user data segment , respectively.
Similarly, all Linux processes running
in Kernel Mode use the same pair of
segments to address instructions and
data: they are called kernel code
segment and kernel data segment ,
respectively. Table 2-3 shows the
values of the Segment Descriptor
fields for these four crucial
segments.
I'm unable to understand 1st and last paragraph.
The 80x86 family of CPUs generate a real address by adding the contents of a CPU register called a segment register to that of the program counter. Thus by changing the segment register contents you can change the physical addresses that the program accesses. Paging does something similar by mapping the same virtual address to different real addresses. Linux using uses the latter - the segment registers for Linux processes will always have the same unchanging contents.
Segmentation and Paging are not at all redundant. The Linux OS fully incorporates demand paging, but it does not use memory segmentation. This gives all tasks a flat, linear, virtual address space of 32/64 bits.
Paging adds on another layer of abstraction to the memory address translation. With paging, linear memory addresses are mapped to pages of memory, instead of being translated directly to physical memory. Since pages can be swapped in and out of physical RAM, paging allows more memory to be allocated than what is physically available. Only pages that are being actively used need to be mapped into physical memory.
An alternative to page swapping is segment swapping, but it is generally much less efficient given that segments are usually larger than pages.
Segmentation of memory is a method of allocating multiple chunks of memory (per task) for different purposes and allowing those chunks to be protected from each other. In Linux a task's code, data, and stack sections are all mapped to a single segment of memory.
The 32-bit processors do not have a mode bit for disabling
segmentation, but the same effect can be achieved by mapping the
stack, code, and data spaces to the same range of linear addresses.
The 32-bit offsets used by 32-bit processor instructions can cover a
four-gigabyte linear address space.
Aditionally, the Intel documentation states:
A flat model without paging minimally requires a GDT with one code and
one data segment descriptor. A null descriptor in the first GDT entry
is also required. A flat model with paging may provide code and data
descriptors for supervisor mode and another set of code and data
descriptors for user mode
This is the reason for having a one pair of CS/DS for kernel privilege execution (ring 0), and one pair of CS/DS for user privilege execution (ring 3).
Summary: Segmentation provides a means to isolate and protect sections of memory. Paging provides a means to allocate more memory that what is physically available.
Windows uses the fs segment for local thread storage.
Therefore, wine has to use it, and the linux kernel needs to support it.
Modern operating systems (i.e. Linux, other Unixen, Windows NT, etc.) do not use the segmentation facility provided by the x86 processor. Instead, they use a flat 32 bit memory model. Each user mode process has it's own 32 bit virtual address space.
(Naturally the widths are expanded to 64 bits on x86_64 systems)
Intel first added segmentation on the 80286, and then paging on the 80386. Unix-like OSes typically use paging for virtual memory.
Anyway, since paging on x86 didn't support execute permissions until recently, OpenWall Linux used segmentation to provide non-executable stack regions, i.e. it set the code segment limit to a lower value than the other segment's limits, and did some emulation to support trampolines on the stack.

Segmentation registers use

I am trying to understand how memory management goes on low level and have a couple of questions.
1) A book about assembly language by by Kip R. Irvine says that in the real mode first three segment registers are loaded with base addresses of code, data, and stack segment when the program starts. This is a bit ambigous to me. Are these values specified manually or does the assembler generates instructions to write the values into registers? If it happens automatically, how it finds out what is the size of these segments?
2) I know that Linux uses flat linear model, i.e. uses segmentation in a very limited way. Also, according to "Understanding the Linux Kernel" by Daniel P. Bovet and Marco Cesati there are four main segments: user data, user code, kernel data and kernel code in GDT. All four segments have the same size and base address. I do not understand why there is need in four of them if they differ only in type and access rights (they all produce the same linear address, right?). Why not use just one of them and write its descriptor to all segment registers?
3) How operating systems that do not use segmentation divide programs into logical segments? For example, how they differentiate stack from code without segment descriptors. I read that paging can be used to handle such things, but don't understand how.
You must have read some really old books because nobody program for real-mode anymore ;-) In real-mode, you can get the physical address of a memory access with physical address = segment register * 0x10 + offset, the offset being a value inside one of the general-purpose registers. Because these registers are 16 bit wide, a segment will be 64kb long and there is nothing you can do about its size, just because there is no attribute! With the * 0x10 multiplication, 1mb of memory become available, but there are overlapping combinations depending on what you put in the segment registers and the address register. I haven't compiled any code for real-mode, but I think it's up to the OS to setup the segment registers during the the binary loading, just like a loader would allocate some pages when loading an ELF binary. However I do have compiled bare-metal kernel code, and I had to setup these registers by myself.
Four segments are mandatory in the flat model because of architecture constraints. In protected-mode the segment registers no more contains the segment base address, but a segment selector which is basically an offset into the GDT. Depending on the value of the segment selector, the CPU will be in a given level of privilege, this is the CPL (Current Privilege Level). The segment selector points to a segment descriptor which has a DPL (Descriptor Privilege Level), which is eventually the CPL if the segment register is filled with with this selector (at least true for the code-segment selector). Therefore you need at least a pair of segment selectors to differentiate the kernel from the userland. Moreover, segments are either code segment or data segment, so you eventually end up with four segment descriptors in the GDT.
I don't have any example of serious OS which make any use of segmentation, just because segmentation is still present for backward compliancy. Using the flat model approach is nothing but a mean to get rid of it. Anyway, you're right, paging is way more efficient and versatile, and available on almost all architecture (the concepts at least). I can't explain here paging internals, but all the information you need to know are inside the excellent Intel man: Intel® 64 and IA-32 Architectures
Software Developer’s Manual
Volume 3A:
System Programming Guide, Part 1
Expanding on Benoit's answer to question 3...
The division of programs into logical parts such as code, constant data, modifiable data and stack is done by different agents at different points in time.
First, your compiler (and linker) creates executable files where this division is specified. If you look at a number of executable file formats (PE, ELF, etc), you'll see that they support some kind of sections or segments or whatever you want to call it. Besides addresses and sizes and locations within the file, those sections bear attributes telling the OS the purpose of these sections, e.g. this section contains code (and here's the entry point), this - initialized constant data, that - uninitialized data (typically not taking space in the file), here's something about the stack, over there is the list of dependencies (e.g. DLLs), etc.
Next, when the OS starts executing the program, it parses the file to see how much memory the program needs, where and what memory protection is needed for every section. The latter is commonly done via page tables. The code pages are marked as executable and read-only, the constant data pages are marked as not executable and read-only, other data pages (including those of the stack) are marked as not executable and read-write. This is how it ought to be normally.
Often times programs need read-write and, at the same time, executable regions for dynamically generated code or just to be able to modify the existing code. The combined RWX access can be either specified in the executable file or requested at run time.
There can be other special pages such as guard pages for dynamic stack expansion, they're placed next to the stack pages. For example, your program starts with enough pages allocated for a 64KB stack and then when the program tries to access beyond that point, the OS intercepts access to those guard pages, allocates more pages for the stack (up to the maximum supported size) and moves the guard pages further. These pages don't need to be specified in the executable file, the OS can handle them on its own. The file should only specify the stack size(s) and perhaps the location.
If there's no hardware or code in the OS to distinguish code memory from data memory or to enforce memory access rights, the division is very formal. 16-bit real-mode DOS programs (COM and EXE) didn't have code, data and stack segments marked in some special way. COM programs had everything in one common 64KB segment and they started with IP=0x100 and SP=0xFFxx and the order of code and data could be arbitrary inside, they could intertwine practically freely. DOS EXE files only specified the starting CS:IP and SS:SP locations and beyond that the code, data and stack segments were indistinguishable to DOS. All it needed to do was load the file, perform relocation (for EXEs only), set up the PSP (Program Segment Prefix, containing the command line parameter and some other control info), load SS:SP and CS:IP. It could not protect memory because memory protection isn't available in the real address mode, and so the 16-bit DOS executable formats were very simple.
Wikipedia is your friend in this case. http://en.wikipedia.org/wiki/Memory_segmentation and http://en.wikipedia.org/wiki/X86_memory_segmentation should be good starting points.
I'm sure there are others here who can personally provide in-depth explanations, though.

program life in terms of paged segmentation memory

I have a confusing notion about the process of segmentation & paging in x86 linux machines. Will be glad if some clarify all the steps involved from the start to the end.
x86 uses paged segmentation memory technique for memory management.
Can any one please explain what happens from the moment an executable .elf format file is loaded from hard disk in to main memory to the time it dies. when compiled the executable has different sections in it (text, data, stack, heap, bss). how will this be loaded ? how will they be set up under paged segmentation memory technique.
Wanted to know how the page tables get set up for the loaded program ? Wanted to know how GDT table gets set up. how the registers are loaded ? and why it is said that logical addresses (the ones that are processed by segmentation unit of MMU are 48 bits (16 bits of segment selector + 32 bit offset) when it is a bit 32 bit machine. how will other 16 bits be stored ? any thing accessed from ram must be 32 bits or 4 bytes how does the rest of 16 bits be accessed (to be loaded into segment registers) ?
Thanks in advance. the question can have a lot of things. but wanted to get clarification about the entire life cycle of an executable. Will be glad if some answers and pulls up a discussion on this.
Unix traditionally has implemented protection via paging. 286+ provides segmentation, and 386+ provides paging. Everyone uses paging, few make any real use of segmentation.
In x86, every memory operand has an implicit segment (so the address is really 16 bit selector + 32 bit offset), depending on the register used. So if you access [ESP + 8] the implied segment register is SS, if you access [ESI] the implied segment register is DS, if you access [EDI+4] the implied segment register is ES,... You can override this via segment prefix overrides.
Linux, and virtually every modern x86 OS, uses a flat memory model (or something similar). Under a flat memory model each segment provides access to the whole memory, with a base of 0 and a limit of 4Gb, so you don't have to worry about the complications segmentation brings about. Basically there are 4 segments: kernelspace code (RX), kernelspace data (RW), userspace code (RX), userspace data (RW).
An ELF file consists of some headers that pont to "program segments" and "sections". Section are used for linking. Program segments are used for loading. Program segments are mapped into memory via mmap(), this setups page-table entries with appropriate permissions.
Now, older x86 CPUs' paging mechanism only provided RW access control (read permission implies execute permission), while segmentation provided RWX access control. The end permission takes into account both segmentation and paging (e.g: RW (data segment) + R (read only page) = R (read only), while RX (code segment) + R (read only page) = RX (read and execute)).
So there are some patches that provide execution prevention via segmentation: e.g. OpenWall provided a non-executable stack by shrinking the code segment (the one with execute permission), and having special emulation in the page fault handler for anything that needed execution from a high memory address (e.g: GCC trampolines, self-modified code created on the stack to efficiently implement nested functions).
There's no such thing as paged segmentation, not in the official documentation at least. There are two different mechanisms working together and more or less independently of each other:
Translation of a logical address of the form 16-bit segment selector value:16/32/64-bit segment offset value, that is, a pair of 2 numbers into a 32/64-bit virtual address.
Translation of the virtual address into a 32/64-bit physical address.
Logical addresses is what your applications operate directly with. Then follows the above 2-step translation of them into what the RAM will understand, physical addresses.
In the first step the GDT (or it can be LDT, depends on the selector value) is indexed by the selector to find the relevant segment's base address and size. The virtual address will be the sum of the segment base address and the offset. The segment size and other things in segment descriptors are needed to provide protection.
In the second step the page tables are indexed by different parts of the virtual address and the last indexed table in the hierarchy gives the final, physical address that goes out on the address bus for the RAM to see. Just like with segment descriptors, page table entries contain not only addresses but also protection control bits.
That's about it on the mechanisms.
Now, in many x86 OSes the segment selectors that are used for applications are fixed, they are the same in all of them, they never change and they point to segment descriptors that have base addresses equal to 0 and sizes equal to the possible maximum (e.g. 4GB in non-64-bit modes). Such a GDT setup effectively means that the first step does no useful work and the offset part of the logical address translates into numerically equal virtual address.
This makes the segment selector values practically useless. They still have to be loaded into the CPU's segment registers (in non-64-bit modes into at least CS, SS, DS and ES), but beyond that point they can be forgotten about.
This all (except Linux-related details and the ELF format) is explained in or directly follows from Intel's and AMD's x86 CPU manuals. You'll find many more details there.
Perhaps read the Assembly HOWTO. When a Linux process starts to execute an ELF executable using the execve system call, it is essentially (sort of) mmap-ing some segments (and initializing registers, and a tiny part of the stack). Read also the SVR4 x86 ABI supplement and its x86-64 variant. Don't forget that a Linux process only see memory mapping for its address space and only cares about virtual memory
There are many good books on Operating Systems (=O.S.) kernels, notably by A.Tanenbaum & by M.Bach, and some on the linux kernel
NB: segment registers are nearly (almost) unused on Linux.

Resources