How can I read data from Druid using spark and Avatica JDBC Driver?
This is avatica JDBC document
Reading data from Druid using python and Jaydebeapi module, I succeed like below code.
$ python
import jaydebeapi
conn = jaydebeapi.connect("org.apache.calcite.avatica.remote.Driver",
"jdbc:avatica:remote:url=http://0.0.0.0:8082/druid/v2/sql/avatica/",
{"user": "druid", "password":"druid"},
"/root/avatica-1.17.0.jar",
)
cur = conn.cursor()
cur.execute("SELECT * FROM INFORMATION_SCHEMA.TABLES")
cur.fetchall()
output is:
[('druid', 'druid', 'wikipedia', 'TABLE'),
('druid', 'INFORMATION_SCHEMA', 'COLUMNS', 'SYSTEM_TABLE'),
('druid', 'INFORMATION_SCHEMA', 'SCHEMATA', 'SYSTEM_TABLE'),
('druid', 'INFORMATION_SCHEMA', 'TABLES', 'SYSTEM_TABLE'),
('druid', 'sys', 'segments', 'SYSTEM_TABLE'),
('druid', 'sys', 'server_segments', 'SYSTEM_TABLE'),
('druid', 'sys', 'servers', 'SYSTEM_TABLE'),
('druid', 'sys', 'supervisors', 'SYSTEM_TABLE'),
('druid', 'sys', 'tasks', 'SYSTEM_TABLE')] -> default tables
But I want to read using spark and JDBC.
I tried it but there is a problem using spark like below code.
$ pyspark --jars /root/avatica-1.17.0.jar
df = spark.read.format('jdbc') \
.option('url', 'jdbc:avatica:remote:url=http://0.0.0.0:8082/druid/v2/sql/avatica/') \
.option("dbtable", 'INFORMATION_SCHEMA.TABLES') \
.option('user', 'druid') \
.option('password', 'druid') \
.option('driver', 'org.apache.calcite.avatica.remote.Driver') \
.load()
output is:
Traceback (most recent call last):
File "<stdin>", line 8, in <module>
File "/root/spark-2.4.4-bin-hadoop2.7/python/pyspark/sql/readwriter.py", line 172, in load
return self._df(self._jreader.load())
File "/root/spark-2.4.4-bin-hadoop2.7/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
File "/root/spark-2.4.4-bin-hadoop2.7/python/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/root/spark-2.4.4-bin-hadoop2.7/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o2999.load.
: java.sql.SQLException: While closing connection
...
Caused by: java.lang.RuntimeException: com.fasterxml.jackson.databind.exc.UnrecognizedPropertyException: Unrecognized field "rpcMetadata" (class org.apache.calcite.avatica.remote.Service$CloseConnectionResponse), not marked as ignorable (0 known properties: ])
at [Source: {"response":"closeConnection","rpcMetadata":{"response":"rpcMetadata","serverAddress":"172.18.0.7:8082"}}
; line: 1, column: 46]
...
Caused by: com.fasterxml.jackson.databind.exc.UnrecognizedPropertyException: Unrecognized field "rpcMetadata" (class org.apache.calcite.avatica.remote.Service$CloseConnectionResponse), not marked as ignorable (0 known properties: ])
at [Source: {"response":"closeConnection","rpcMetadata":{"response":"rpcMetadata","serverAddress":"172.18.0.7:8082"}}
; line: 1, column: 46]
...
Note:
I downloaded Avatica jar file(avatica-1.17.0.jar) from maven-repository
I installed Druid server using docker-compose and default setting values.
I found another way to solve this problem. I used spark-druid-connector to connect druid with spark.
But I changed some codes like this to use this code for my environment.
This is my environment:
spark: 2.4.4
scala: 2.11.12
python: python 3.6.8
druid:
zookeeper: 3.5
druid: 0.17.0
However, it has a problem.
If you use spark-druid-connector at least once, all sql queries like spark.sql("select * from tmep_view") used from the following will be entered into this planner.
but, if you use dataframe's api like df.distinct().count(), then there are no problems. I didn't solve yet.
I tried with spark-shell:
./bin/spark-shell --driver-class-path avatica-1.17.0.jar --jars avatica-1.17.0.jar
val jdbcDF = spark.read.format("jdbc")
.option("url", "jdbc:avatica:remote:url=http://0.0.0.0:8082/druid/v2/sql/avatica/")
.option("dbtable", "INFORMATION_SCHEMA.TABLES")
.option("user", "druid")
.option("password", "druid")
.load()
Related
I was trying to connect Google big query using pySpark using the below code :
from pyspark.sql import SparkSession
from pyspark import SparkConf, SparkContext
conf = SparkConf().setAppName("GCP")
sc = SparkContext(conf=conf)
master = "yarn"
spark = SparkSession.builder \
.master("local")\
.appName("GCP") \
.getOrCreate()
spark._jsc.hadoopConfiguration().set("google.cloud.auth.service.account.json.keyfile","key.json")
df = spark.read.format('bigquery') \
.option("parentProject", "project_name") \
.option('table', 'project_name.table_name') \
.load()
df.show()
my spark version 2.3 and big query jar : spark-bigquery-latest_2.12
Though my service account was having "BigQuery Job User" permission at project level and bigquery data viewer and bigquery user at dataset level , but still I am getting the below error when trying to execute the above code
Traceback (most recent call last):
File "/home/lo815/GCP/gcp.py", line 23, in <module>
df.show()
File "/usr/hdp/current/spark2-client/python/lib/pyspark.zip/pyspark/sql/dataframe.py", line 350, in show
File "/usr/hdp/current/spark2-client/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
File "/usr/hdp/current/spark2-client/python/lib/pyspark.zip/pyspark/sql/utils.py", line 63, in deco
File "/usr/hdp/current/spark2-client/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o93.showString.
: com.google.cloud.spark.bigquery.repackaged.com.google.api.gax.rpc.PermissionDeniedException: com.google.cloud.spark.bigquery.repackaged.io.grpc.StatusRuntimeException: PERMISSION_DENIED: request failed: the user does not have 'bigquery.readsessions.create' permission for 'projects/GCP'
at com.google.cloud.spark.bigquery.repackaged.com.google.api.gax.rpc.ApiExceptionFactory.createException(ApiExceptionFactory.java:53)
I am trying to send data from a daily batch to a Kafka topic using pyspark, but I currently receive the following error:
Traceback (most recent call last): File "", line 5, in
File
"/usr/local/rms/lib/hdp26_c5000/spark2/python/pyspark/sql/readwriter.py",
line 548, in save
self._jwrite.save() File "/usr/local/rms/lib/hdp26_c5000/spark2/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py",
line 1133, in call File
"/usr/local/rms/lib/hdp26_c5000/spark2/python/pyspark/sql/utils.py",
line 71, in deco
raise AnalysisException(s.split(': ', 1)[1], stackTrace) pyspark.sql.utils.AnalysisException: u"Invalid call to toAttribute on
unresolved object, tree: unresolvedalias('shop_id, None)"
The code I am using is as follows:
from pyspark.sql import SparkSession
from pyspark.sql import functions
spark = SparkSession \
.builder \
.appName("Python Spark SQL basic example") \
.config("spark.debug.maxToStringFields", 100000) \
.getOrCreate()
df = spark.sql('''select distinct shop_id, item_id
from sale.data
''')
df.selectExpr("shop_id", "item_id") \
.write \
.format("kafka") \
.option("kafka.bootstrap.servers", "myserver.local:443") \
.option("topic","test_topic_01") \
.save()
Currently used versions are:
-Spark 2.1.1.2.6.2.0-205
-Kafka Broker 0.11
Kafka expects that a key and a value is written into its topic. Although the key is not mandatory. It does that by looking at the names of the dataframe columns which should be "key" and "value".
In your query, you are only selecting the column "shop_id", so no key or value column is existing. The error message: "unresolvedalias('shop_id, None)" tells you that the column "shop_id" is selected as the key (as it is the first column), but nothing is interpreted as the mandatory value.
You can solve your issue by renaming the column to "value", something like:
df = spark.sql('''select distinct shop_id, item_id
from sale.data
''')
df.withColumn("value", col("shop_id").cast(StringType)) \
.write \
.format("kafka") \
.option("kafka.bootstrap.servers", "myserver.local:443") \
.option("topic","test_topic_01") \
.save()
I am trying to read some data from a Kafka broker using structured streaming to display it in a Zeppelin note. I am using Spark 2.4.3, Scala 2.11, Python 2.7, Java 9 and Kafka 2.2 with SSL enabled hosted on Heroku, but get the StreamingQueryException: 'Failed to construct kafka consumer'.
I am using the following dependencies (set in the Spark interpreter settings):
org.apache.spark:spark-streaming-kafka-0-10_2.11:2.4.3
org.apache.spark:spark-streaming_2.11:2.4.3
org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.3
I have tried older and newer versions, but these should match Spark/Scala versions I am using.
I have successfully written and read from Kafka using simple Python producer and consumer.
The code I am using:
%pyspark
from pyspark.sql.functions import from_json
from pyspark.sql.types import *
from pyspark.sql.functions import col, expr, when
schema = StructType().add("power", IntegerType()).add("colorR", IntegerType()).add("colorG",IntegerType()).add("colorB",IntegerType()).add("colorW",IntegerType())
df = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", brokers) \
.option("kafka.security.protocol", "SSL") \
.option("kafka.ssl.truststore.location", "/home/ubuntu/kafka/truststore.jks") \
.option("kafka.ssl.keystore.location", "/home/ubuntu/kafka/keystore.jks") \
.option("kafka.ssl.keystore.password", password) \
.option("kafka.ssl.truststore.password", password) \
.option("kafka.ssl.endpoint.identification.algorithm", "") \
.option("startingOffsets", "earliest") \
.option("subscribe", topic) \
.load()
schema = ArrayType(
StructType([StructField("power", IntegerType()),
StructField("colorR", IntegerType()),
StructField("colorG", IntegerType()),
StructField("colorB", IntegerType()),
StructField("colorW", IntegerType())]))
readDF = df.select( \
col("key").cast("string"),
from_json(col("value").cast("string"), schema))
query = readDF.writeStream.format("console").start()
query.awaitTermination()
And the error I get:
Fail to execute line 43: query.awaitTermination()
Traceback (most recent call last):
File "/tmp/zeppelin_pyspark-2171412221151055324.py", line 380, in <module>
exec(code, _zcUserQueryNameSpace)
File "<stdin>", line 43, in <module>
File "/home/ubuntu/spark/python/lib/pyspark.zip/pyspark/sql/streaming.py", line 103, in awaitTermination
return self._jsq.awaitTermination()
File "/home/ubuntu/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/home/ubuntu/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 75, in deco
raise StreamingQueryException(s.split(': ', 1)[1], stackTrace)
StreamingQueryException: u'Failed to construct kafka consumer\n=== Streaming Query ===\nIdentifier: [id = 2ee20c47-8293-469a-bc0b-ef71a1f118bc, runId = 72422290-090a-4b6d-bd66-088a5a534240]\nCurrent Committed Offsets: {}\nCurrent Available Offsets: {}\n\nCurrent State: ACTIVE\nThread State: RUNNABLE\n\nLogical Plan:\nProject [cast(key#7 as string) AS key#22, jsontostructs(ArrayType(StructType(StructField(power,IntegerType,true), StructField(colorR,IntegerType,true), StructField(colorG,IntegerType,true), StructField(colorB,IntegerType,true), StructField(colorW,IntegerType,true)),true), cast(value#8 as string), Some(Etc/UTC)) AS jsontostructs(CAST(value AS STRING))#21]\n+- StreamingExecutionRelation KafkaV2[Subscribe[tanana-44614.lightbulb]], [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13]\n'
When I use read and write instead of readStream and writeStream I do not get any errors, but nothing appears on the console when I send some data to Kafka.
What else should I try?
It looks like the Kafka Consumer cannot access ~/kafka/truststore.jks and hence the exception. Replace ~ with the fully-specified path (without the tilde) and the issue should go away.
I am facing an issue when connecting to HBASE using PySpark as it fails with an error as:
py4j.protocol.Py4JJavaError: An error occurred while calling o42.load.
: java.lang.ClassNotFoundException: Failed to find data source: org.apache.spark.sql.execution.datasources.hbase. Please find packages at http://spark.apache.org/third-party-projects.html
HDP Version : 2.6.4.0-91
Spark Ver: 2.2.0.2.6.4.0-91
Python: 2.7.5
Jar used: /usr/hdp/2.6.4.0-91/shc/shc-core-1.1.0.2.6.4.0-91.jar
I tried jar import using pyspark --jars /usr/hdp/2.6.4.0-91/shc/shc-core-1.1.0.2.6.4.0-91.jar
It takes to PySpark's shell with the prompt, but when I try to connect to HBASE, it fails with the error mentioned above.
Sample Code Executed:
Using Python version 2.7.5 (default, May 31 2018 09:41:32)
SparkSession available as 'spark'.
>>> catalog = ''.join("""{'table': {'namespace': 'default','name': 'books'},'rowkey': 'key','columns': {'title': {'cf': 'rowkey', 'col': 'key', 'type': 'string'},'author': {'cf': 'info', 'col': 'author', 'type': 'string'}}}""".split())
>>>
>>> df = sqlContext.read.options(catalog=catalog).format('org.apache.spark.sql.execution.datasources.hbase').load()
Failing with error given below:
Traceback (most recent call last):
File "", line 1, in
ImportError: No module named org.apache.spark.sql.execution.datasources.hbase
Try with using --packages and --repositories arguments as mentioned here.
bash$ export SPARK_MAJOR_VERSION=2
bash$ pyspark --packages com.hortonworks:shc-core:1.1.1-2.1-s_2.11 --repositories http://repo.hortonworks.com/content/groups/public/
>>> from pyspark.sql.functions import *
>>> from pyspark.sql.types import *
>>> spark = SparkSession \
.builder \
.enableHiveSupport() \
.getOrCreate()
>>> catalog = ''.join("""{'table': {'namespace': 'default','name': 'books'},'rowkey': 'key','columns': {'title': {'cf': 'rowkey', 'col': 'key', 'type': 'string'},'author': {'cf': 'info', 'col': 'author', 'type': 'string'}}}""".split())
>>> df=spark.read.options(catalog=catalog,newtable=5).format("org.apache.spark.sql.execution.datasources.hbase").load()
I am trying to read hive tables using pyspark, remotely. It states the error that it is unable to connect to Hive Metastore client.
I have read multiple answers on SO and other sources, they were mostly configurations but none of them could address why am I unable to connect remotely. I read the documentation and observed that without making changes in any configuration file, we can connect spark with hive. Note: I have port-forwarded a machine where hive is running and brought it available to localhost:10000. I even connected the same using presto and was able to run queries on hive.
The code is:
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession, HiveContext
SparkContext.setSystemProperty("hive.metastore.uris", "thrift://localhost:9083")
sparkSession = (SparkSession
.builder
.appName('example-pyspark-read-and-write-from-hive')
.enableHiveSupport()
.getOrCreate())
data = [('First', 1), ('Second', 2), ('Third', 3), ('Fourth', 4), ('Fifth', 5)]
df = sparkSession.createDataFrame(data)
df.write.saveAsTable('example')
I expect the output to be an acknowledgment of table being saved but instead, I am facing this error.
Abstract error is:
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "/usr/local/spark/python/pyspark/sql/readwriter.py", line 775, in saveAsTable
self._jwrite.saveAsTable(name)
File "/usr/local/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
File "/usr/local/spark/python/pyspark/sql/utils.py", line 69, in deco
raise AnalysisException(s.split(': ', 1)[1], stackTrace)
pyspark.sql.utils.AnalysisException: 'java.lang.RuntimeException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient;'
I have fired a command:
ssh -i ~/.ssh/id_rsa_sc -L 9000:A.B.C.D:8080 -L 9083:E.F.G.H:9083 -L 10000:E.F.G.H:10000 ubuntu#I.J.K.l
When I check for ports 10000 and 9083 via the commands:
aviral#versinator:~/testing-spark-hive$ nc -zv localhost 10000
Connection to localhost 10000 port [tcp/webmin] succeeded!
aviral#versinator:~/testing-spark-hive$ nc -zv localhost 9083
Connection to localhost 9083 port [tcp/*] succeeded!
Upon running the script, I get the following error:
Caused by: java.net.UnknownHostException: ip-172-16-1-101.ap-south-1.compute.internal
... 45 more
The catch is in letting the hive configs being stored while creating the spark session itself.
sparkSession = (SparkSession
.builder
.appName('example-pyspark-read-and-write-from-hive')
.config("hive.metastore.uris", "thrift://localhost:9083", conf=SparkConf())
.enableHiveSupport()
.getOrCreate()
)
It should be noted that no changes in spark conf are required, even serverless services like AWS Glue can have such connections.
For full code:
from pyspark import SparkContext, SparkConf
from pyspark.conf import SparkConf
from pyspark.sql import SparkSession, HiveContext
"""
SparkSession ss = SparkSession
.builder()
.appName(" Hive example")
.config("hive.metastore.uris", "thrift://localhost:9083")
.enableHiveSupport()
.getOrCreate();
"""
sparkSession = (SparkSession
.builder
.appName('example-pyspark-read-and-write-from-hive')
.config("hive.metastore.uris", "thrift://localhost:9083", conf=SparkConf())
.enableHiveSupport()
.getOrCreate()
)
data = [('First', 1), ('Second', 2), ('Third', 3), ('Fourth', 4), ('Fifth', 5)]
df = sparkSession.createDataFrame(data)
# Write into Hive
#df.write.saveAsTable('example')
df_load = sparkSession.sql('SELECT * FROM example')
df_load.show()
print(df_load.show())