outlier detection using 2D spatial information - statistics

I have a list of sensor measurements for air quality with geo-coordinates, and I would like to implement outlier detection. The list of sensors is relatively small (~50).
The air quality can gradually change with the distance, but abrupt local spikes are likely outliers. If one sensor in the group of closely located sensors shows a higher value it could be an outlier. If the same higher value is shown by more distant sensors it might be OK.
Of course, I can ignore coordinates and do simple outlier detection assuming the normal distribution, but I was hoping to do something more sophisticated. What would be a good statistical way to model this and implement outlier detection?

The above statement, ("If one sensor in the group of closely located sensors shows a higher value it could be an outlier. If the same higher value is shown by more distant sensors it might be OK."), would indicate that sensors that are closer to each other tend to have values that are more alike.
Tobler’s first law of geography - “everything is related to everything else, but near things are more related than distant things”
You can quantify an answer to this question. The focus is should not be on the location and values from outlier sensors. Use global spatial autocorrelation to answer the degree to which sensors that are near each other tend to be more alike.
As a start, you will first need to define neighbors for each sensor.

I'd calculate a cost function, consisting of two costs:
1: cost_neighbors: Calculates the deviance from the sensor value of an expected value. The expected value is calculated by summing up all the values and weighting them by their distance.
2: cost_previous_step: Check how much the value of the sensor changed compared to the last time step. Large change in value leads to a large cost.
Here is some pseudo code describing how to calculate the costs:
expected_value = ((value_neighbor_0 / distance_neighbor_0)+(value_neighbor_1 / distance_neighbor_1)+ ... )/nb_neighbors
cost_neighbors = abs(expected_value-value)
cost_previous_timestep = value#t - value#t-1
total_cost = a*cost_neighbors + b*cost_previous_timestep
a and b are parameters that can be tuned to give each of the costs more or less impact. The total cost is then used to determine if a sensor value is an outlier, the larger it is, the likelier it is an outlier.
To figure out the performance and weights, you can plot the costs of some labeled data points, of which you know if they are an outlier or not.
cost_neigbors
| X
| X X
|
|o o
|o o o
|___o_____________ cost_previous_step
X= outlier
o= non-outlier
You can now either set the threshold by hand or create a small dataset with the labels and costs, and apply any sort of classifier function (e.g. SVM).
If you use python, an easy way to find neighbors and their distances is scipy.spatial.cKDtree

Related

How to design a score or signature function based on the time series data

I want to design a score or signature function based on a time series signal. Usually, the signal has ups and downs.
For a given time window, I desire to design the score function based on the number of times it fluctuates, the duration of the fluctuations, and the magnitude of the fluctuations. I am wondering what kind of math I can use to design the function. I am not sure if the statistical features (mean, median, and so on) would be enough to design unique function such that two time windows would be distinguishable.
Thanks!
Summary statistics will not give you what you want... but it can still be useful.
Things you can try:
Zero crossings on the signal will give you number of fluctuations. You'll have to use some central tendency value to move the signal about the 0 line in order to do this. Alternatively you can use FFT on the original to find the harmonic frequency as part of the score.
Could define the duration of fluctuations as the difference between zero crossings divided by two (since one fluctuation will reach the 0-line twice).
Magnitude can be done by finding the local minima and maxima - check out some packages with peak finding functions. You might want to use the mean or median to rule out local minima and maxima that fall on the wrong side of the line. Alternatively, finding the zero crossings on the derivative signal and then mapping them back to the original will give you all the local minima and maxima as well.

Scale before PCA

I'm using PCA from sckit-learn and I'm getting some results which I'm trying to interpret, so I ran into question - should I subtract the mean (or perform standardization) before using PCA, or is this somehow embedded into sklearn implementation?
Moreover, which of the two should I perform, if so, and why is this step needed?
I will try to explain it with an example. Suppose you have a dataset that includes a lot features about housing and your goal is to classify if a purchase is good or bad (a binary classification). The dataset includes some categorical variables (e.g. location of the house, condition, access to public transportation, etc.) and some float or integer numbers (e.g. market price, number of bedrooms etc). The first thing that you may do is to encode the categorical variables. For instance, if you have 100 locations in your dataset, the common way is to encode them from 0 to 99. You may even end up encoding these variables in one-hot encoding fashion (i.e. a column of 1 and 0 for each location) depending on the classifier that you are planning to use. Now if you use the price in million dollars, the price feature would have a much higher variance and thus higher standard deviation. Remember that we use square value of the difference from mean to calculate the variance. A bigger scale would create bigger values and square of a big value grow faster. But it does not mean that the price carry significantly more information compared to for instance location. In this example, however, PCA would give a very high weight to the price feature and perhaps the weights of categorical features would almost drop to 0. If you normalize your features, it provides a fair comparison between the explained variance in the dataset. So, it is good practice to normalize the mean and scale the features before using PCA.
Before PCA, you should,
Mean normalize (ALWAYS)
Scale the features (if required)
Note: Please remember that step 1 and 2 are not the same technically.
This is a really non-technical answer but my method is to try both and then see which one accounts for more variation on PC1 and PC2. However, if the attributes are on different scales (e.g. cm vs. feet vs. inch) then you should definitely scale to unit variance. In every case, you should center the data.
Here's the iris dataset w/ center and w/ center + scaling. In this case, centering lead to higher explained variance so I would go with that one. Got this from sklearn.datasets import load_iris data. Then again, PC1 has most of the weight on center so patterns I find in PC2 I wouldn't think are significant. On the other hand, on center | scaled the weight is split up between PC1 and PC2 so both axis should be considered.

A method to find the inconsistency or variation in the data

I am running an experiment (it's an image processing experiment) in which I have a set of paper samples and each sample has a set of lines. For each line in the paper sample, its strength is calculated which is denoted by say 's'. For a given paper sample I have to find the variation amongst the strength values 's'. If the variation is above a certain limit, we have to discard that paper.
1) I started with the Standard Deviation of the values, but the problem I am facing is that for each sample, order of magnitude for s (because of various properties of line like its length, sharpness, darkness etc) might differ and also the calculated Standard Deviations values are also differing a lot in magnitude. So I can't really use this method for different samples.
Is there any way where I can find that suitable limit which can be applicable for all samples.
I am thinking that since I don't have any history of how the strength value should behave,( for a given sample depending on the order of magnitude of the strength value more variation could be tolerated in that sample whereas because the magnitude is less in another sample, there should be less variation in that sample) I first need to find a way of baselining the variation in different samples. I don't know what approaches I could try to get started.
Please note that I have to tell variation between lines within a sample whereas the limit should be applicable for any good sample.
Please help me out.
You seem to have a set of samples. Then, for each sample you want to do two things: 1) compute a descriptive metric and 2) perform outlier detection. Both of these are vast subjects that require some knowledge of the phenomenology and statistics of the underlying problem. However, below are some ideas to get you going.
Compute a metric
Median Absolute Deviation. If your sample strength s has values that can jump by an order of magnitude across a sample then it is understandable that the standard deviation was not a good metric. The standard deviation is notoriously sensitive to outliers. So, try a more robust estimate of dispersion in your data. For example, the MAD estimate uses the median in the underlying computations which is more robust to a large spread in the numbers.
Robust measures of scale. Read up on other robust measures like the Interquartile range.
Perform outlier detection
Thresholding. This is similar to what you are already doing. However, you have to choose a suitable threshold for the metric computed above. You might consider using another robust metric for thresholding the metric. You can compute a robust estimate of their mean (e.g., the median) and a robust estimate of their standard deviation (e.g., 1.4826 * MAD). Then identify outliers as metric values above some number of robust standard deviations above the robust mean.
Histogram Another simple method is to histogram your computed metrics from step #1. This is non-parametric so it doesn't require you to model your data. If can histogram your metric values and then use the top 1% (or some other value) as your threshold limit.
Triangle Method A neat and simple heuristic for thresholding is the triangle method to perform binary classification of a skewed distribution.
Anomaly detection Read up on other outlier detection methods.

Use Kalman filter to track the position of an object, but need to know the position of that object as an input of Kalman filter. What is going on?

I am trying to study how to use Kalman filter in tracking an object (ball) moving in a video sequence by myself so please explain it to me as I am a child.
By some algorithms (color analysis, optical flow...), I am able to get a binary image of each video frame in which there is the tracking object ( white pixels) and background (black pixels) -> I know the object size, object centroid, object position -> Just simple draw a bounding box around the object --> Finish. Why do I need to use Kalman filter here?
Ok, somebody told me that because I can not detect the object in each video frame because of noise, I need to use Kalman filter to estimate the position of the object. Ok, fine. But as I know, I need to provide the input to Kalman filter. They are previous state and measurement.
previous state ( so I think it is the position, the velocity, acceleration...of the object in the previous frame) -> Ok, this is fine to me.
measurement of current state: Here is what I can not understand. What can measurement be?
- The position of the object in the current frame? It is funny because if I know the position of the object, all I need is just to draw a simple boundingbox (rectangular) around the object. Why I need Kalman filter here anymore? Therefore, it is impossible to take the position of the object in the current frame as measurement value.
- "Kalman Filter Based Tracking in an Video Surveillance System" article says
The main role of the Kalman filtering block is to assign a tracking
filter to each of the measurements entering the system from the
optical flow analysis block.
If you read the full paper, you will see that the author takes the maximum number of blob and the minimum size of the blob as an input to the Kalman filter. How can those parameters be used as measurement?
I think I am in a loop now. I want to use Kalman filter to track the position of an object, but I need to know the position of that object as an input of Kalman filter. What is going on?
And 1 more question, I dont understand the term "number of Kalman filter". In a video sequence, if there are 2 objects need to track -> need to use 2 Kalman filter? Is that what it means?
You don't use the Kalman filter to give you an initial estimate of something; you use it to give you an improved estimate based on a series of noisy estimates.
To make this easier to understand, imagine you're measuring something that is not dynamic, like the height of an adult. You measure once, but you're not sure of the accuracy of the result, so you measure again for 10 consecutive days, and each measurement is slightly different, say a few millimeters apart. So which measurement should you choose as the best value? I think it's easy to see that taking the average will give you a better estimate of the person's true height than using any single measurement.
OK, but what has that to do with the Kalman filter?
The Kalman filter is essentially taking an average of a series of measurements, as above, but for dynamic systems. For instance, let's say you're measuring the position of a marathon runner along a race track, using information provided by a GPS + transmitter unit attached to the runner. The GPS gives you one reading per minute. But those readings are inaccurate, and you want to improve your knowledge of the runner's current position. You can do that in the following way:
Step 1) Using the last few readings, you can estimate the runner's velocity and estimate where he will be at any time in the future (this is the prediction part of the Kalman filter).
Step 2) Whenever you receive a new GPS reading, do a weighted average of the reading and of your estimate obtained in step 1 (this is the update part of the Kalman filter). The result of the weighted average is a new estimate that lies in between the predicted and measured position, and is more accurate than either by itself.
Note that you must specify the model you want the Kalman filter to use in the prediction part. In the marathon runner example you could use a constant velocity model.
The purpose of the Kalman filter is to mitigate the noise and other inaccuracies in your measurements. In your case, the measurement is the x,y position of the object that has been segmented out of the frame. If you can perfectly segmement out the ball and only the ball from the background for every frame, there is no need for the Kalman filter since your measurements in effect contain no noise.
In most applications, perfect measurements cannot be guaranteed for a number of reasons (change in lighting, change in background, other moving objects, etc.) so there needs to be a way of filtering the measurements to produce the best estimate of the true track.
What the Kalman Filter does is use a model to predict what the next position should be assuming the model holds true, and then compares that estimate to the actual measurement you pass in. The actual measurement is used in conjunction with the prediction and noise characteristics to form the final position estimate and update a characterization of the noise (measure of how much the measurements are differing from the model).
The model could be anything that models the system you are trying to track. A common model is a constant velocity model which just assumes that the object will continue to move with the same velocity as in the previous estimate. This is not to say that this model will not track something with a changing velocity since the measurements will reflect the change in velocity and affect the estimate.
There are a number of ways you can attack the problem of tracking multiple objects at once. The simplest way is to use an independent Kalman filter for each track. This is where the Kalman filter really starts to pay off because if you are using the simple approach of just using the centroid of a bounding box, what happens if the two objects cross one another? Can you again differentiate which object is which after they separate? With the Kalman filter, you have the model and prediction that will help keep the track correct when other objects are interfering.
There are also more advanced ways of tracking multiple objects jointly like a JPDAF.
Jason has given a good start on what Kalman filter is. In regard to your question as to how the paper can use the maximum number of blobs and the minimum size of the blob, this is exactly the power of Kalman filter.
A measurement needs not be a position, a velocity or an acceleration. A measurement can be any quantity that you can observe at a time instance. If you can define a model that predict your measurement in the next time instance given the current measurement, Kalman filter can help you mitigate the noise.
I would suggest you look into more introductory materials on Image Processing and Computer Vision. These materials will almost always cover Kalman filter.
Here is a SIGGRAPH course on trackers. It is not introductory but should give you a more in-depth look at the topic.
http://www.cs.unc.edu/~tracker/media/pdf/SIGGRAPH2001_CoursePack_08.pdf
In the case that you can find the ball exactly in every frame, you don't need a Kalman filter. Just because you find some blog which is likely the ball, it doesn't mean that the center of that blob will be the perfect center of the ball. Think of that as your measurement error. Also, if you happen to pick out the wrong blog, using a Kalman filter would help prevent you from trusting that one wrong measurement. Like you said before, if you can't find the ball in a frame, you can also use the filter to estimate where it is likely to be.
Here are some of the matrices you will need, and my guess at what they would be for you. Since the x and y position of the ball is independent, I think it is easier to have two filters, one for each. Both would look kinda like this:
x = [position ; velocity] //This is the output of the filter
P = [1, 0 ; 0 ,1] //This is the uncertainty of the estimation, I am not quite sure what you should have to start, but it will converge once the filter is running.
F = [ 1,dt ; 0,1] when you do x*F this will predict the next location of the ball. Notice that this assumes the ball keeps moving with the same velocity as before, and just updates the position.
Q = [ 0,0 ; 0,vSigma^2] This is the "process noise". This one of the matrices you tune to make the filter preform well. In your system, velocity can change at any time, but position will never change without the velocity being what changed it. This is confusing. The value should be the standard deviation of what those velocity changes might be.
z = [position in x or y] This is your measurement
H = [1,0 ; 0,0] This is how your measurement gets applied to your current state. Since you are only measuring position, you only have a 1 in the first row.
R = [?] I think you will only need a scalar for R, which is the error in your measurement.
With those matrices you should be able to plug them into the formulas that are everywhere for Kalman filters.
Some good things to read:
Kalman filtering demo
Another great into, read the page linked to in the third paragraph
I had this question few weeks ago. I hope this answer helps another people.
If you can get the a good segmentation at each frame (the whole ball), you don't need to use kalman filter. But segmentation can give you a set of unconected blobs (only few parts of the ball). The problem is to know what parts (blobs) belong to the object or are just noise. Using kalman filter we can assign blobs near of the estimated position as parts of the object. E.g. if the ball has 10 pixels of radius, blobs with a distance higher than 15 should not be considered as part of the object.
Kalman filter uses the previous state to predict the current state. But, uses the current measurement (current object position) to improve its next prediction. E.g. if a vehicle is at the position 10 (previous state) and goes with a velocity of 5 m/s, kalman filter predict the next position at the position 15. But if we measure the position of the object, we found the object is at position 18. In order to improve the estimation, kalman filter updates the velocity to 8 m/s.
As summary, kalman filter is mainly used to solve the data
association problem in video tracking. It is also good to estimate
the object position, because it take into account the noise in the
source and in the observation.
And for you final question, you are right. It corresponds to the number of
object to track (one kalman filter per object).
In vision application , it is common to use your results at each frame as measurement, for example location of ball in each frame is good measurement.

"Winamp style" spectrum analyzer

I have a program that plots the spectrum analysis (Amp/Freq) of a signal, which is preety much the DFT converted to polar. However, this is not exactly the sort of graph that, say, winamp (right at the top-left corner), or effectively any other audio software plots. I am not really sure what is this sort of graph called (if it has a distinct name at all), so I am not sure what to look for.
I am preety positive about the frequency axis being base two exponential, the amplitude axis puzzles me though.
Any pointers?
Actually an interesting question. I know what you are saying; the frequency axis is certainly logarithmic. But what about the amplitude? In response to another poster, the amplitude can't simply be in units of dB alone, because dB has no concept of zero. This introduces the idea of quantization error, SNR, and dynamic range.
Assume that the received digitized (i.e., discrete time and discrete amplitude) time-domain signal, x[n], is equal to s[n] + e[n], where s[n] is the transmitted discrete-time signal (i.e., continuous amplitude) and e[n] is the quantization error. Suppose x[n] is represented with b bits, and for simplicity, takes values in [0,1). Then the maximum peak-to-peak amplitude of e[n] is one quantization level, i.e., 2^{-b}.
The dynamic range is the defined to be, in decibels, 20 log10 (max peak-to-peak |s[n]|)/(max peak-to-peak |e[n]|) = 20 log10 1/(2^{-b}) = 20b log10 2 = 6.02b dB. For 16-bit audio, the dynamic range is 96 dB. For 8-bit audio, the dynamic range is 48 dB.
So how might Winamp plot amplitude? My guesses:
The minimum amplitude is assumed to be -6.02b dB, and the maximum amplitude is 0 dB. Visually, Winamp draws the window with these thresholds in mind.
Another nonlinear map, such as log(1+X), is used. This function is always nonnegative, and when X is large, it approximates log(X).
Any other experts out there who know? Let me know what you think. I'm interested, too, exactly how this is implemented.
To generate a power spectrum you need to do the following steps:
apply window function to time domain data (e.g. Hanning window)
compute FFT
calculate log of FFT bin magnitudes for N/2 points of FFT (typically 10 * log10(re * re + im * im))
This gives log magnitude (i.e. dB) versus linear frequency.
If you also want a log frequency scale then you will need to accumulate the magnitude from appropriate ranges of bins (and you will need a fairly large FFT to start with).
Well I'm not 100% sure what you mean but surely its just bucketing the data from an FFT?
If you want to get the data such that you have (for a 44Khz file) frequency points at 22Khz, 11Khz 5.5Khz etc then you could use a wavelet decomposition, i guess ...
This thread may help ya a bit ...
Converting an FFT to a spectogram
Same sort of information as a spectrogram I'd guess ...
What you need is power spectrum graph. You have to compute DFT of your signal's current window. Then square each value.

Resources