I have a Dataframe with 20 columns and I want to update one particular column (whose data is null) with the data extracted from another column and do some formatting. Below is a sample input
+------------------------+----+
|col1 |col2|
+------------------------+----+
|This_is_111_222_333_test|NULL|
|This_is_111_222_444_test|3296|
|This_is_555_and_666_test|NULL|
|This_is_999_test |NULL|
+------------------------+----+
and my output should be like below
+------------------------+-----------+
|col1 |col2 |
+------------------------+-----------+
|This_is_111_222_333_test|111,222,333|
|This_is_111_222_444_test|3296 |
|This_is_555_and_666_test|555,666 |
|This_is_999_test |999 |
+------------------------+-----------+
Here is the code I have tried and it is working only when the the numeric is continuous, could you please help me with a solution.
df.withColumn("col2",when($"col2".isNull,regexp_replace(regexp_replace(regexp_extract($"col1","([0-9]+_)+",0),"_",","),".$","")).otherwise($"col2")).show(false)
I can do this by creating a UDF, but I am thinking is it possible with the spark in-built functions. My Spark version is 2.2.0
Thank you in advance.
A UDF is a good choice here. Performance is similar to that of the withColumn approach given in the OP (see benchmark below), and it works even if the numbers are not contiguous, which is one of the issues mentioned in the OP.
import org.apache.spark.sql.functions.udf
import scala.util.Try
def getNums = (c: String) => {
c.split("_").map(n => Try(n.toInt).getOrElse(0)).filter(_ > 0)
}
I recreated your data as follows
val data = Seq(("This_is_111_222_333_test", null.asInstanceOf[Array[Int]]),
("This_is_111_222_444_test",Array(3296)),
("This_is_555_666_test",null.asInstanceOf[Array[Int]]),
("This_is_999_test",null.asInstanceOf[Array[Int]]))
.toDF("col1","col2")
data.createOrReplaceTempView("data")
Register the UDF and run it in a query
spark.udf.register("getNums",getNums)
spark.sql("""select col1,
case when size(col2) > 0 then col2 else getNums(col1) end new_col
from data""").show
Which returns
+--------------------+---------------+
| col1| new_col|
+--------------------+---------------+
|This_is_111_222_3...|[111, 222, 333]|
|This_is_111_222_4...| [3296]|
|This_is_555_666_test| [555, 666]|
| This_is_999_test| [999]|
+--------------------+---------------+
Performance was tested with a larger data set created as follows:
val bigData = (0 to 1000).map(_ => data union data).reduce( _ union _)
bigData.createOrReplaceTempView("big_data")
With that, the solution given in the OP was compared to the UDF solution and found to be about the same.
// With UDF
spark.sql("""select col1,
case when length(col2) > 0 then col2 else getNums(col1) end new_col
from big_data""").count
/// OP solution:
bigData.withColumn("col2",when($"col2".isNull,regexp_replace(regexp_replace(regexp_extract($"col1","([0-9]+_)+",0),"_",","),".$","")).otherwise($"col2")).count
Here is another way, please check the performance.
df.withColumn("col2", expr("coalesce(col2, array_join(filter(split(col1, '_'), x -> CAST(x as INT) IS NOT NULL), ','))"))
.show(false)
+------------------------+-----------+
|col1 |col2 |
+------------------------+-----------+
|This_is_111_222_333_test|111,222,333|
|This_is_111_222_444_test|3296 |
|This_is_555_666_test |555,666 |
|This_is_999_test |999 |
+------------------------+-----------+
Related
I have the following DataFrame containing the date format - yyyyMMddTHH:mm:ss+UTC
Data Preparation
sparkDF = sql.createDataFrame([("20201021T00:00:00+0530",),
("20211011T00:00:00+0530",),
("20200212T00:00:00+0300",),
("20211021T00:00:00+0530",),
("20211021T00:00:00+0900",),
("20211021T00:00:00-0500",)
]
,['timestamp'])
sparkDF.show(truncate=False)
+----------------------+
|timestamp |
+----------------------+
|20201021T00:00:00+0530|
|20211011T00:00:00+0530|
|20200212T00:00:00+0300|
|20211021T00:00:00+0530|
|20211021T00:00:00+0900|
|20211021T00:00:00-0500|
+----------------------+
I m aware of the date format to parse and convert the values to DateType
Timestamp Parsed
sparkDF.select(F.to_date(F.col('timestamp'),"yyyyMMdd'T'HH:mm:ss+0530").alias('timestamp_parsed')).show()
+----------------+
|timestamp_parsed|
+----------------+
| 2020-10-21|
| 2021-10-11|
| null|
| 2021-10-21|
| null|
| null|
+----------------+
As you can see , its specific to +0530 strings , I m aware of the fact that I can use multiple patterns and coalesce the first non-null values
Multiple Patterns & Coalesce
sparkDF.withColumn('p1',F.to_date(F.col('timestamp'),"yyyyMMdd'T'HH:mm:ss+0530"))\
.withColumn('p2',F.to_date(F.col('timestamp'),"yyyyMMdd'T'HH:mm:ss+0900"))\
.withColumn('p3',F.to_date(F.col('timestamp'),"yyyyMMdd'T'HH:mm:ss-0500"))\
.withColumn('p4',F.to_date(F.col('timestamp'),"yyyyMMdd'T'HH:mm:ss+0300"))\
.withColumn('timestamp_parsed',F.coalesce(F.col('p1'),F.col('p2'),F.col('p3'),F.col('p4')))\
.drop(*['p1','p2','p3','p4'])\
.show(truncate=False)
+----------------------+----------------+
|timestamp |timestamp_parsed|
+----------------------+----------------+
|20201021T00:00:00+0530|2020-10-21 |
|20211011T00:00:00+0530|2021-10-11 |
|20200212T00:00:00+0300|2020-02-12 |
|20211021T00:00:00+0530|2021-10-21 |
|20211021T00:00:00+0900|2021-10-21 |
|20211021T00:00:00-0500|2021-10-21 |
+----------------------+----------------+
Is there a better way to accomplish this, as there might be a bunch of other UTC within the data source, is there a standard UTC TZ available within Spark to parse all the cases
i think you have got the 2nd argument of your to_date function wrong which is causing null values in your output
the +530 in your timestamp is the Zulu value which just denotes how many hours and mins ahead (for +) or behind (for -) the current timestamp is withrespect to UTC.
Please refer to the response by Basil here Java / convert ISO-8601 (2010-12-16T13:33:50.513852Z) to Date object This link has full details available for the same.
To answer your question if you replace +0530 by Z it should solve your problem.
Here is the spark code in scala that I tried and worked:
val data = Seq("20201021T00:00:00+0530",
"20211011T00:00:00+0530",
"20200212T00:00:00+0300",
"20211021T00:00:00+0530",
"20211021T00:00:00+0900",
"20211021T00:00:00-0500")
import spark.implicits._
val sparkDF = data.toDF("custom_time")
import org.apache.spark.sql.functions._
val spark_DF2 = sparkDF.withColumn("new_timestamp", to_date($"custom_time", "yyyyMMdd'T'HH:mm:ssZ"))
spark_DF2.show(false)
here is the snapshot of the output. As you can see there are no null values.
You can usually use x, X or Z for offset pattern as you can find on Spark date pattern documentation page. You can then parse your date with the following complete pattern: yyyyMMdd'T'HH:mm:ssxx
However, if you use those kind of offset patterns, your date will be first converted in UTC format, meaning all timestamp with a positive offset will be matched to the previous day. For instance "20201021T00:00:00+0530" will be matched to 2020-10-20 using to_date with the previous pattern.
If you want to get displayed date as a date, ignoring offset, you should first extract date string from complete timestamp string using regexp_extract function, then perform to_date.
If you take your example "20201021T00:00:00+0530", what you want to extract with a regexp is 20201021 part and apply to_date on it. You can do it with the following pattern: ^(\\d+). If you're interested, you can find how to build other patterns in java's Pattern documentation.
So your code should be:
from pyspark.sql import functions as F
sparkDF.select(
F.to_date(
F.regexp_extract(F.col('timestamp'), '^(\\d+)', 0), 'yyyyMMdd'
).alias('timestamp_parsed')
).show()
And with your input you will get:
+----------------+
|timestamp_parsed|
+----------------+
|2020-10-21 |
|2021-10-11 |
|2020-02-12 |
|2021-10-21 |
|2021-10-21 |
|2021-10-21 |
+----------------+
You can create "udf" in spark and use it. Below is the code in scala.
import spark.implicits._
//just to create the dataset for the example you have given
val data = Seq(
("20201021T00:00:00+0530"),
("20211011T00:00:00+0530"),
("20200212T00:00:00+0300"),
("20211021T00:00:00+0530"),
("20211021T00:00:00+0900"),
("20211021T00:00:00-0500"))
val dataset = data.toDF("timestamp")
val udfToDateUTC = functions.udf((epochMilliUTC: String) => {
val formatter = DateTimeFormatter.ofPattern("yyyyMMdd'T'HH:mm:ssZ")
val res = OffsetDateTime.parse(epochMilliUTC, formatter).withOffsetSameInstant(ZoneOffset.UTC)
res.toString()
})
dataset.select(dataset.col("timestamp"),udfToDateUTC(dataset.col("timestamp")).alias("timestamp_parsed")).show(false)
//output
+----------------------+-----------------+
|timestamp |timestamp_parsed |
+----------------------+-----------------+
|20201021T00:00:00+0530|2020-10-20T18:30Z|
|20211011T00:00:00+0530|2021-10-10T18:30Z|
|20200212T00:00:00+0300|2020-02-11T21:00Z|
|20211021T00:00:00+0530|2021-10-20T18:30Z|
|20211021T00:00:00+0900|2021-10-20T15:00Z|
|20211021T00:00:00-0500|2021-10-21T05:00Z|
+----------------------+-----------------+
from pyspark.sql.functions import date_format
customer_data = select("<column_name>",date_format("<column_name>",'yyyyMMdd').cast('customer')
I'm having trouble spliting a dataframe's column into more columns in PySpark:
I have a list of lists and I want to transform it into a dataframe, each value in one column.
What I have tried:
I created a dataframe from this list:
[['COL-4560', 'COL-9655', 'NWG-0610', 'D81-3754'],
['DLL-7760', 'NAT-9885', 'PED-0550', 'MAR-0004', 'LLL-5554']]
Using this code:
from pyspark.sql import Row
R = Row('col1', 'col2')
# use enumerate to add the ID column
df_from_list = spark.createDataFrame([R(i, x) for i, x in enumerate(recs_list)])
The result I got is:
+----+--------------------+
|col1| col2|
+----+--------------------+
| 0|[COL-4560, COL-96...|
| 1|[DLL-7760, NAT-98...|
+----+--------------------+
I want to separate the values by comma into columns, so I tried:
from pyspark.sql import functions as F
df2 = df_from_list.select('col1', F.split('col2', ', ').alias('col2'))
# If you don't know the number of columns:
df_sizes = df2.select(F.size('col2').alias('col2'))
df_max = df_sizes.agg(F.max('col2'))
nb_columns = df_max.collect()[0][0]
df_result = df2.select('col1', *[df2['col2'][i] for i in range(nb_columns)])
df_result.show()
But I get an error on this line df2 = df_from_list.select('col1', F.split('col2', ', ').alias('col2')):
AnalysisException: cannot resolve 'split(`col2`, ', ', -1)' due to data type mismatch: argument 1 requires string type, however, '`col2`' is of array<string> type.;;
My ideal final output would be like this:
+----------+----------+----------+----------+----------+
| SKU | REC_01 | REC_02 | REC_03 | REC_04 |
+----------+----------+----------+----------+----------+
| COL-4560 | COL-9655 | NWG-0610 | D81-3754 | null |
| DLL-7760 | NAT-9885 | PED-0550 | MAR-0004 | LLL-5554 |
+---------------------+----------+----------+----------+
Some rows may have four values, but some my have more or less, I don't know the exact number of columns the final dataframe will have.
Does anyone have any idea of what is happening? Thank you very much in advance.
Dataframe df_from_list col2 column is already array type, so no need to split (as split works with stringtype here we have arraytype).
Here are the steps that will work for you.
recs_list=[['COL-4560', 'COL-9655', 'NWG-0610', 'D81-3754'],
['DLL-7760', 'NAT-9885', 'PED-0550', 'MAR-0004', 'LLL-5554']]
from pyspark.sql import Row
R = Row('col1', 'col2')
# use enumerate to add the ID column
df_from_list = spark.createDataFrame([R(i, x) for i, x in enumerate(recs_list)])
from pyspark.sql import functions as F
df2 = df_from_list
# If you don't know the number of columns:
df_sizes = df2.select(F.size('col2').alias('col2'))
df_max = df_sizes.agg(F.max('col2'))
nb_columns = df_max.collect()[0][0]
cols=['SKU','REC_01','REC_02','REC_03','REC_04']
df_result = df2.select(*[df2['col2'][i] for i in range(nb_columns)]).toDF(*cols)
df_result.show()
#+--------+--------+--------+--------+--------+
#| SKU| REC_01| REC_02| REC_03| REC_04|
#+--------+--------+--------+--------+--------+
#|COL-4560|COL-9655|NWG-0610|D81-3754| null|
#|DLL-7760|NAT-9885|PED-0550|MAR-0004|LLL-5554|
#+--------+--------+--------+--------+--------+
The sample RDD looks like:
(key1,(111,222,1)
(key1,(113,224,1)
(key1,(114,225,0)
(key1,(115,226,0)
(key1,(113,226,0)
(key1,(116,227,1)
(key1,(117,228,1)
(key2,(118,229,1)
I am currently doing a spark project. I want to filter the first and last elements where the third position in tuple values are '1' and '0' based on keys.
Is it possible to do it with reduceByKey? But after my research, I did not find a good logic to reach what I want. I want my result in the order which is the same as the output shown below.
Expected output:
(key1,(111,222,1)
(key1,(114,225,0)
(key1,(113,226,0)
(key1,(116,227,1)
(key2,(118,229,1)
Much appreciated.
If I understand correctly, you want the first "1", the first "0", the last "1" and the last "0" for each key, and maintain the order. If I were you, I would use the SparkSQL API to do that.
First, let's build your RDD (By the way, providing sample data is very nice, giving enough code so that we can reproduce what you did is ever better):
val seq = Seq(("key1",(111,222,1)),
("key1",(113,224,1)),
("key1",(114,225,0)),
("key1",(115,226,0)),
("key1",(113,226,0)),
("key1",(116,227,1)),
("key1",(117,228,1)),
("key2",(118,229,1)))
val rdd = sc.parallelize(seq)
// then I switch to dataframes, and add an id to be able to go back to
// the previous order
val df = rdd.toDF("key", "value").withColumn("id", monotonicallyIncreasingId)
df.show()
+----+-----------+------------+
| key| value| id|
+----+-----------+------------+
|key1|[111,222,1]| 8589934592|
|key1|[113,224,1]| 25769803776|
|key1|[114,225,0]| 42949672960|
|key1|[115,226,0]| 60129542144|
|key1|[113,226,0]| 77309411328|
|key1|[116,227,1]| 94489280512|
|key1|[117,228,1]|111669149696|
|key2|[118,229,1]|128849018880|
+----+-----------+------------+
Now, we can group by "key" and "value._3", keep the min(id) and its max and explode back the data. With a window however, we can do it in a simpler way. Let's define the following window:
val win = Window.partitionBy("key", "value._3").orderBy("id")
// now we compute the previous and next element of each id using resp. lag and lead
val big_df = df
.withColumn("lag", lag('id, 1) over win)
.withColumn("lead", lead('id, 1) over win)
big_df.show
+----+-----------+------------+-----------+------------+
| key| value| id| lag| lead|
+----+-----------+------------+-----------+------------+
|key1|[111,222,1]| 8589934592| null| 25769803776|
|key1|[113,224,1]| 25769803776| 8589934592| 94489280512|
|key1|[116,227,1]| 94489280512|25769803776|111669149696|
|key1|[117,228,1]|111669149696|94489280512| null|
|key1|[114,225,0]| 42949672960| null| 60129542144|
|key1|[115,226,0]| 60129542144|42949672960| 77309411328|
|key1|[113,226,0]| 77309411328|60129542144| null|
|key2|[118,229,1]|128849018880| null| null|
+----+-----------+------------+-----------+------------+
Now we see that the rows you are after are the ones with either a lag equal to null (first element) or a lead equal to null (last element). Therefore, let's filter, sort back to the previous order using the id and select the columns you need:
val result = big_df
.where(('lag isNull) || ('lead isNull))
.orderBy('id)
.select("key", "value")
result.show
+----+-----------+
| key| value|
+----+-----------+
|key1|[111,222,1]|
|key1|[114,225,0]|
|key1|[113,226,0]|
|key1|[117,228,1]|
|key2|[118,229,1]|
+----+-----------+
Finally, if you really need a RDD, you can convert the dataframe with:
result.rdd.map(row => row.getAs[String](0) -> row.getAs[(Int, Int, Int)](1))
I would like to understand the best way to do an aggregation in Spark in this scenario:
import sqlContext.implicits._
import org.apache.spark.sql.functions._
case class Person(name:String, acc:Int, logDate:String)
val dateFormat = "dd/MM/yyyy"
val filterType = // Could has "MIN" or "MAX" depending on a run parameter
val filterDate = new Timestamp(System.currentTimeMillis)
val df = sc.parallelize(List(Person("Giorgio",20,"31/12/9999"),
Person("Giorgio",30,"12/10/2009")
Person("Diego", 10,"12/10/2010"),
Person("Diego", 20,"12/10/2010"),
Person("Diego", 30,"22/11/2011"),
Person("Giorgio",10,"31/12/9999"),
Person("Giorgio",30,"31/12/9999"))).toDF()
val df2 = df.withColumn("logDate",unix_timestamp($"logDate",dateFormat).cast(TimestampType))
val df3 = df.groupBy("name").agg(/*conditional aggregation*/)
df3.show /*Expected output show below */
Basically I want to group all records by name column and then based on the filterType parameter, I want to filter all valid records for a Person, then after filtering, I want to sum all acc values obtaining a final
DataFrame with name and totalAcc columns.
For example:
filterType = MIN , I want to take all records with having min(logDate) , could be many of them, so basically in this case I completely ignore filterDate param:
Diego,10,12/10/2010
Diego,20,12/10/2010
Giorgio,30,12/10/2009
Final result expected from aggregation is: (Diego, 30),(Giorgio,30)
filterType = MAX , I want to take all records with logDate > filterDate, I for a key I don't have any records respecting this condition, I need to take records with min(logDate) as done in MIN scenario, so:
Diego, 10, 12/10/2010
Diego, 20, 12/10/2010
Giorgio, 20, 31/12/9999
Giorgio, 10, 31/12/9999
Giorgio, 30, 31/12/9999
Final result expected from aggregation is: (Diego,30),(Giorgio,60)
In this case for Diego I didn't have any records with logDate > logFilter, so I fallback to apply MIN scenario, taking just for Diego all records with min logDate.
You can write your conditional aggregation using when/otherwise as
df2.groupBy("name").agg(sum(when(lit(filterType) === "MIN" && $"logDate" < filterDate, $"acc").otherwise(when(lit(filterType) === "MAX" && $"logDate" > filterDate, $"acc"))).as("sum"))
.filter($"sum".isNotNull)
which would give you your desired output according to filterType
But
Eventually you would require both aggregated dataframes so I would suggest you to avoid filterType field and just go with aggregation by creating additional column for grouping using when/otherwise function. So that you can have both aggregated values in one dataframe as
df2.withColumn("additionalGrouping", when($"logDate" < filterDate, "less").otherwise("more"))
.groupBy("name", "additionalGrouping").agg(sum($"acc"))
.drop("additionalGrouping")
.show(false)
which would output as
+-------+--------+
|name |sum(acc)|
+-------+--------+
|Diego |10 |
|Giorgio|60 |
+-------+--------+
Updated
Since the question is updated with the logic changed, here is the idea and solution to the changed scenario
import org.apache.spark.sql.expressions._
def windowSpec = Window.partitionBy("name").orderBy($"logDate".asc)
val minDF = df2.withColumn("minLogDate", first("logDate").over(windowSpec)).filter($"minLogDate" === $"logDate")
.groupBy("name")
.agg(sum($"acc").as("sum"))
val finalDF =
if(filterType == "MIN") {
minDF
}
else if(filterType == "MAX"){
val tempMaxDF = df2
.groupBy("name")
.agg(sum(when($"logDate" > filterDate,$"acc")).as("sum"))
tempMaxDF.filter($"sum".isNull).drop("sum").join(minDF, Seq("name"), "left").union(tempMaxDF.filter($"sum".isNotNull))
}
else {
df2
}
so for filterType = MIN you should have
+-------+---+
|name |sum|
+-------+---+
|Diego |30 |
|Giorgio|30 |
+-------+---+
and for filterType = MAX you should have
+-------+---+
|name |sum|
+-------+---+
|Diego |30 |
|Giorgio|60 |
+-------+---+
In case if the filterType isn't MAX or MIN then original dataframe is returned
I hope the answer is helpful
You don't need conditional aggregation. Just filter:
df
.where(if (filterType == "MAX") $"logDate" < filterDate else $"logDate" > filterDate)
.groupBy("name").agg(sum($"acc")
I have a dataframe of StructField with a mixed schema (DoubleType, StringType, LongType, etc.).
I want to 'iterate' over all columns to return summary statistics. For instance:
set_min = df.select([
fn.min(self.df[c]).alias(c) for c in self.df.columns
]).collect()
Is what I'm using to find the minimum value in each column. That works fine. But when I try something designed similar to find Nulls:
set_null = df.filter(
(lambda x: self.df[x]).isNull().count()
).collect()
I get the TypeError: condition should be string or Column which makes sense, I'm passing a function.
or with list comprehension:
set_null = self.df[c].alias(c).isNull() for c in self.df.columns
Then I try pass it a SQL query as a string:
set_null = df.filter('SELECT fields FROM table WHERE column = NUL').collect()
I get:
ParseException: "\nmismatched input 'FROM' expecting <EOF>(line 1, pos 14)\n\n== SQL ==\nSELECT fields FROM table WHERE column = NULL\n--------------^^^\n"
How can i pass my function as a 'string or column' so I can use filter or where alternatively, why wont the pure SQL statement work?
There are things wrong in several parts of your attempts:
You are missing square brackets in your list comprehension example
You missed an L in NUL
Your pure SQL doesn't work, because filter/where expects a where clause, not a full SQL statement; they are just aliases and I prefer to use where so it is clearer you just need to give such a clause
In the end you don't need to use where, like karlson also shows. But subtracting from the total count means you have to evaluate the dataframe twice (which can be alleviated by caching, but still not ideal). There is a more direct way:
>>> df.select([fn.sum(fn.isnull(c).cast('int')).alias(c) for c in df.columns]).show()
+---+---+
| A| B|
+---+---+
| 2| 3|
+---+---+
This works because casting a boolean value to integer give 1 for True and 0 for False. If you prefer SQL, the equivalent is:
df.select([fn.expr('SUM(CAST(({c} IS NULL) AS INT)) AS {c}'.format(c=c)) for c in df.columns]).show()
or nicer, without a cast:
df.select([fn.expr('SUM(IF({c} IS NULL, 1, 0)) AS {c}'.format(c=c)) for c in df.columns]).show()
If you want a count of NULL values per column you could count the non-null values and subtract from the total.
For example:
from pyspark.sql import SparkSession
from pyspark.sql import functions as fn
spark = SparkSession.builder.master("local").getOrCreate()
df = spark.createDataFrame(
data=[
(1, None),
(1, 1),
(None, None),
(1, 1),
(None, 1),
(1, None),
],
schema=("A", "B")
)
total = df.count()
missing_counts = df.select(
*[(total - fn.count(col)).alias("missing(%s)" % col) for col in df.columns]
)
missing_counts.show()
>>> +----------+----------+
... |missing(A)|missing(B)|
... +----------+----------+
... | 2| 3|
... +----------+----------+