while inserting data into component through impex throing erre - sap-commerce-cloud

$contentCatalog=apparel-ukContentCatalog
$contentCV=catalogVersion(CatalogVersion.catalog(Catalog.id[default=$contentCatalog]),CatalogVersion.version[default=Online])[default=$contentCatalog:Online]
INSERT_UPDATE TopSellingProductComponent;$contentCV[unique=true];uid[unique=true];name;numberofproducts
;;topSellingProductComponent;top Selling Product Component;10
error is:[type TopSellingProductComponent is abstract - no permitted type for mode import_strict]}, definition please how to fix it

There is no simple way to optimize such a query.
You can build and maintain a Summary Table, then do the query from that table. This approach may achieve a 10-fold speedup.
More discussion: http://mysql.rjweb.org/doc.php/summarytables

You can create a covering index that includes all fields referenced in the query. Note for a large table it may take a considerable amount of time to build such an index.
Once the index is created you can check the explain plan to confirm that the query is using the index.
Presuming the index is being used, the performance should be dramatically improved for select query.
It is possible that the index slows down high volume insert/update statements, so give this some consideration..

Related

How do I find out right data design and right tools/database/query for below requirement

I have a kind of requirement but not able to figure out how can I solve it. I have datasets in below format
id, atime, grade
123, time1, A
241, time2, B
123, time3, C
or if I put in list format:
[[123,time1,A],[124,timeb,C],[123,timec,C],[143,timed,D],[423,timee,P].......]
Now my use-case is to perform comparison, aggregation and queries over multiple row like
time difference between last 2 rows where id=123
time difference between last 2 rows where id=123&GradeA
Time difference between first, 3rd, 5th and latest one
all data (or last 10 records for particular id) should be easily accessible.
Also need to further do compute. What format should I chose for dataset
and what database/tools should I use?
I don't Relational Database is useful here. I am not able to solve it with Solr/Elastic if you have any ideas, please give a brief.Or any other tool Spark, hadoop, cassandra any heads?
I am trying out things but any help is appreciated.
Choosing the right technology is highly dependent on things related to your SLA. things like how much can your query have latency? what are your query types? is your data categorized as big data or not? Is data updateable? Do we expect late events? Do we need historical data in the future or we can use techniques like rollup? and things like that. To clarify my answer, probably by using window functions you can solve your problems. For example, you can store your data on any of the tools you mentioned and by using the Presto SQL engine you can query and get your desired result. But not all of them are optimal. Furthermore, usually, these kinds of problems can not be solved with a single tool. A set of tools can cover all requirements.
tl;dr. In the below text we don't find a solution. It introduces a way to think about data modeling and choosing tools.
Let me take try to model the problem to choose a single tool. I assume your data is not updatable, you need a low latency response time, we don't expect any late event and we face a large volume data stream that must be saved as raw data.
Based on the first and second requirements, it's crucial to have random access (it seems you wanna query on a particular ID), so solutions like parquet or ORC files are not a good choice.
Based on the last requirement, data must be partitioned based on the ID. Both the first and second requirements and the last requirement, count on ID as an identifier part and it seems there is nothing like join and global ordering based on other fields like time. So we can choose ID as the partitioner (physical or logical) and atime as the cluster part; For each ID, events are ordered based on the time.
The third requirement is a bit vague. You wanna result on all data? or for each ID?
For computing the first three conditions, we need a tool that supports window functions.
Based on the mentioned notes, it seems we should choose a tool that has good support for random access queries. Tools like Cassandra, Postgres, Druid, MongoDB, and ElasticSearch are things that currently I can remember them. Let's check them:
Cassandra: It's great on response time on random access queries, can handle a huge amount of data easily, and does not have a single point of failure. But sadly it does not support window functions. Also, you should carefully design your data model and it seems it's not a good tool that we can choose (because of future need for raw data). We can bypass some of these limitations by using Spark alongside Cassandra, but for now, we prefer to avoid adding a new tool to our stack.
Postgres: It's great on random access queries and indexed columns. It supports window functions. We can shard data (horizontal partitioning) across multiple servers (and by choosing ID as the shard key, we can have data locality on computations). But there is a problem: ID is not unique; so we can not choose ID as the primary key and we face some problems with random access (We can choose the ID and atime columns (as a timestamp column) as a compound primary key, but it does not save us).
Druid: It's a great OLAP tool. Based on the storing manner (segment files) that Druid follows, by choosing the right data model, you can have analytic queries on a huge volume of data in sub-seconds. It does not support window functions, but with rollup and some other functions (like EARLIEST), we can answer our questions. But by using rollup, we lose raw data and we need them.
MongoDB: It supports random access queries and sharding. Also, we can have some type of window function on its computing framework and we can define some sort of pipelines for doing aggregations. It supports capped collections and we can use it to store the last 10 events for each ID if the cardinality of the ID column is not high. It seems this tool can cover all of our requirements.
ElasticSearch: It's great on random access, maybe the greatest. With some kind of filter aggregations, we can have a type of window function. It can handle a large amount of data with sharding. But its query language is hard. I can imagine we can answer the first and second questions with ES, but for now, I can't make a query in my mind. It takes time to find the right solution with it.
So it seems MongoDB and ElasticSearch can answer our requirements, but there is a lot of 'if's on the way. I think we can't find a straightforward solution with a single tool. Maybe we should choose multiple tools and use techniques like duplicating data to find an optimal solution.

Mongoose: how to use index in aggregate?

How can I use indexes in aggregate?
I saw the document https://docs.mongodb.com/manual/core/aggregation-pipeline/#pipeline-operators-and-indexes
The $match and $sort pipeline operators can take advantage of an index when they occur at the beginning of the pipeline.
Is there any way of using index not the beginning situation?
like $sort,
$match or $group
Please help me
An index works by keeping a record of certain pieces of data that point to a given record in your collection. Think of it like having a novel, and then having a sheet of paper that lists the names of various people or locations in that novel with the page numbers where they're mentioned.
Aggregation is like taking that novel and transforming the different pages into an entirely different stream of information. You don't know where the new information is located until the transformation actually happens, so you can't possibly have an index on that transformed information.
In other words, it's impossible to use an index in any aggregation pipeline stage that is not at the very beginning because that data will have been transformed and MongoDB has no way of knowing if it's even possible to efficiently make use of the newly transformed data.
If your aggregation pipeline is too large to handle efficiently, then you need to limit the size of your pipeline in some way such that you can handle it more efficiently. Ideally this would mean having a $match stage that sufficiently limits the documents to a reasonably-sized subset. This isn't always possible, however, so additional effort may be required.
One possibility is generating "summary" documents that are the result of aggregating all new data together, then performing your primary aggregation pipeline using only these summary documents. For example, if you have a log of transactions in your system that you wish to aggregate, then you could generate a daily summary of the quantities and types of the different transactions that have been logged for the day, along with any other additional data you would need. You would then limit your aggregation pipeline to only these daily summary documents and avoid using the normal transaction documents.
An actual solution is beyond the scope of this question, however. Just be aware that the index usage is a limitation that you cannot avoid.

what is better view or another table in cassandra?

I got table that I need to search by not indexed field. What is better, to make separate table with data I need and indexed by that field or make view? what is drawbacks of each chose? May be I can use secondary Index in that case instead?
A second table will be better hands down. Only disadvantage is it requires more of your effort.
Materialized views have issues where they get outta sync and theres no way to repair them, only drop and recreate (they are now considered experimental and not prod ready). Secondary indexes require huge scatter gather queries that make your 99th percentile your average (while also being difficult to size appropriately). Ultimately for any heavy load, MVs or 2i will break, but its easy to add.

Using Cognos 10.1 which is better an Inner Join or an "IN" Filter?

I'm using Cognos 10.1 and I have a report that uses two queries each with the same primary key.
Query 1: UniqueIds
Query 2: DetailedInfo
I'm not sure how to tell whether it's better build a report using the DetailedInfo query with a filter that says PrimaryKey in (UniqueIds.PrimaryKey) or should I create a third query that joins UniqueIds to DetailedInfo on PrimaryKey.
I'm new to Cognos and I'm learning to think differently. Using MicroSoft SQL Server I'd just use an inner join.
So my question is, in Cognos 10.1 which way is better and how can tell what the performance differences are?
You'd better start from the beginning.
You queries (I hope Query Subjects) should be joined in Framework Manager, in a model. Then you can easily filter second query by applying filters to first query.
Joins in Report Studio is the last solution.
The report writers ultimate weapon is a well indexed data warehouse, with a solid framework model built on top.
You want all of your filtering and joining to happen on the database side as much as possible. If not, then large data sets are brought over to the Cognos server before they are joined and filtered by Cognos.
The more work that happens on the database, the faster your reports will be. By building your reports in certain ways, you can mitigate Cognos side processing, and promote database side processing.
The first and best way to do this is with a good Framework Model, as Alexey pointed out. This will allow your reports to be simpler, and pushes most of the work to the database.
However a good model still exposes table keys to report authors so that they can have the flexibility to create unique data sets. Not every report warrants a new Star Schema, and sometimes you want to join the results of queries against two different Star Schema sources.
When using a join or a filter, Cognos attempts to push all of the work to the database as a default. It wants to have the final data set sent to it, and nothing else.
However when creating your filters, you have two ways of defining variables... with explicit names that refer to modeled data sources (ie. [Presentation View].[Sales].[Sales Detail].[Net Profit] ) or by referring to a column in the current data set (such as [Net Profit] ). Using explicit columns from the model will help ensure the filters are applied at the database.
Sometimes that is not possible, such as with a calculated column. For example, if you dont have Net Profit in your database or within your model, you may establish it with a Calculated column. If you filter on [Net Profit] > 1000, Cognos will pull the dataset into Cognos before applying your filter. Your final result will be the same, but depending on the size of data before and after the filter is applied, you could see a performance decrease.
It is possible to have nested queries within your report, and cognos will generate a single giant SQL statement for the highest level query, which includes sub queries for all the lower level data. You can generate SQL/MDX in order to see how Cognos is building the queries.
Also, try experimenting. Save your report with a new name, try it one way and time it. Run it a few times and take an average execution speed. Time it again with the alternate method and compare.
With smaller data sets, you are unlikely to see any difference. The larger your data set gets, the bigger a difference your method will affect the report speed.
Use joins to merge two queries together so that columns from both queries can be used in the report. Use IN() syntax if your only desire is to filter one query using the existence of corresponding rows in a second. That said, there are likely to be many cases that both methods will be equally performant, depending on the number of rows involved, indexes etc.
By the way, within a report Cognos only supports joins and unions between different queries. You can reference other queries directly in filters even without an established relationship but I've seen quirks with this, like it works when run interactively but not scheduled or exported. I would avoid doing this in reports.

showing search results more efficiently?

I want to implement the auto-complete feature provided by various e-commerce stores. Functionality is pretty simple, when you type some characters, it start showing relevant suggestions.
I implemented it using solr (django-haystack), using the autocomplete method provided in haystack.query.SearchQuerySet . Basically, i get a list of results sorted by the score. Showing top n results as suggestions.
Solr document contains $product_name, $category_name and other fields. So the results which i generated looks like list of " in ".
Problem arise when i change the category name. If i change the category name, i have to update all the product belong to that particular category to reflect these changes in the auto-complete (update all documents in solr for products of this category).
Another way to do this is by putting just the id of the categories with product in the solr document. In that case, I have do look-up for category name each time, and this is not efficient.
Is there any other efficient way to do this?
Since you are changing the underlying data, the same has to be propogated to SOLR.
There are different approaches to do this:
Update the database, and reindex - Pros: Simple enough, Cons: Indexing time can be large.
Update database and Solr in tandem - Pros: Quick updates, almost instantaneous, Cons: Can lead to data inconsistency (if one update fails)
Update database, and schedule a delta-import in Solr. This is like a middle ground between the two above.
I would recommend the 3rd approach, but this would require some upfront schema design. Read more about delta import here, in context of DataImportHandler.

Resources