"get_ylim()" is changing the result of the transformation from data to display coordinates in matplotlib (I'm using version 3.2.1). Is it supposed to change axis properties? It's the same effect using "get_xlim()".
Here is my code:
import matplotlib.pyplot as plt
import numpy as np
dpi = 80
plt.rcParams.update({'font.size': 12})
fig, ax = plt.subplots(figsize=(1280/dpi, 720/dpi), dpi=dpi)
x = np.arange(200)
y = - 0.1 * x
ax.plot(x, y)
points = ax.transData.transform(np.vstack((x, y)).T).astype(int)
print(points[:5])
ax.get_ylim()
points = ax.transData.transform(np.vstack((x, y)).T).astype(int)
print(points[:5])
Both prints output different results only with the ax.get_ylim() in place.
Related
How would I go on about plotting a dot that moves along a wave pack/superposition. I saw this on the website and wanted to try for myself.https://blog.soton.ac.uk/soundwaves/further-concepts/2-dispersive-waves/. So I know how to animate a superpositon of two sine waves. But how would I plot a dot that moves along it? I won't post my entire code, but it looks somewhat like this
import matplotlib.pyplot as plt
import numpy as np
N = 1000
x = np.linspace(0,100,N)
wave1 = np.sin(2*x)
wave2 = np.sin(3*x)
sWave = wave1+wave2
plt.plot(x,sWave)
plt.ion()
for t in np.arange(0,400):
sWave.set_ydata(sWave)
plt.draw()
plt.pause(.1)
plt.ioff()
plt.show()
Note that this is just a quick draft of my original code.
You can add a scatter and update its data in a loop by using .set_offsets().
import matplotlib.pyplot as plt
import numpy as np
N = 1000
x = np.linspace(0, 100, N)
wave1 = np.sin(2*x)
wave2 = np.sin(3*x)
sWave = wave1 + wave2
fig, ax = plt.subplots()
ax.plot(x, sWave)
scatter = ax.scatter([], [], facecolor="red") # Initialize an empty scatter.
for t in range(N):
scatter.set_offsets((x[t], sWave[t])) # Modify that scatter's data.
fig.canvas.draw()
plt.pause(.001)
I am trying to create a plot with 2 xtick labels for the x-axis.
My code is given below. It does not create the x-ticks as I expected (In fact there is no xticks label in my pdf). I followed the code snippet given in the link
https://matplotlib.org/examples/pylab_examples/multiline.html
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import rc
filename = 'small-dg-ss.pdf'
rc('mathtext', default='regular')
rc('lines',lw=2.6)
rc('lines',mew=2.4)
rc('text', usetex=True)
x = np.array([5,10,20,50])
fig, ax1 = plt.subplots(frameon=False)
disp_dcg = np.array([0.85, 0.88, 0.93, 1.0])
ax1.plot(x,disp_dcg,'bs:')
ax1.set_ylabel('GD',color='b',size=14)
ax1.set_ylim([0.7,1.02])
ax2 = ax1.twinx()
disp_gc = np.array([1.0, 0.98, 0.95, 0.92])
ax2.plot(x,disp_gc,'rv:')
ax2.set_ylabel('LS',color='r',size=14)
ax2.set_ylim([0.7,1.02])
plt.xticks([0.2,0.4,0.6,0.8], [r"$\beta = 0.1$
$\alpha = 0.99$", r"$\beta = 0.5$
$\alpha = 0.89$", r"$\beta = 0.8$
$\alpha = 0.51$", r"$\beta = 0.9$
$\alpha = 0.33"] )
fig.savefig(filename,format='pdf',transparent=True, bbox_inches='tight')
I do not want the entries in the variable x to appear in x-axis, but the ticks I explicitly specify.
I am trying to create a 3D plot but I am having trouble with the z-axis label. It simply doesn't appear in the graph. How do I amend this? The code is as follows
# Gamma vs Current step 2
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
h = np.arange(0.1,5.1,0.1)
gamma = np.arange(0.1,5.1,0.1)
sigmaz_hgam = np.array([.009998,.03988,.08878,.15403
,.230769,.312854,.394358,.4708311,.539697879,.6,.6518698
,.696033486,.73345752165,.7651390123,.792,.814845635
,.8343567,.851098499,.865535727,.8780487,.8889486,.89848986
,.906881,.914295,.9208731,.9267338,.93197569,.93668129
,.9409202379,.94475138,.951383,.9542629,.956895,.959309
,.961526,.9635675,.96545144,.9671934,.968807,.97030539
,.9716983,.972995,.974206,.975337,.97639567,.977387,.978318
,.97919266,.98,.9807902])
mu = 1
sigmaz_hgam = mu*sigmaz_hgam
# creates an empty list for current values to be stored in
J1 = []
for i in range(sigmaz_hgam.size):
expec_sz = sigmaz_hgam[i]
J = 4*gamma[i]*(mu-expec_sz)
J1.append(J.real)
#print(J)
This part of the code is what is used to graph out which is where the problem lies
mpl.rcParams['legend.fontsize'] = 10
fig = plt.figure()
ax = fig.gca(projection='3d')
x = h
y = gamma
z = J1
ax.plot(x, y, z, label='Dephasing Model')
ax.legend()
ax.set_xlabel('h', fontsize=10)
ax.set_ylabel('$\gamma$')
ax.yaxis._axinfo['label']['space_factor'] = 3.0
for t in ax.zaxis.get_major_ticks(): t.label.set_fontsize(10)
# disable auto rotation
ax.zaxis.set_rotate_label(False)
ax.set_zlabel('J', fontsize=10, rotation = 0)
plt.show()
On my version of Matplotlib (2.0.2), on a Mac, I see the label (which is there – most of it is just being cropped out of the image in your case).
You could try to reduce the padding between the ticks and the label:
ax.zaxis.labelpad = 0
I can generate an error-bar plot using the code below. The graph produced by the code shows vertical lines that represent the errors in y. I would like to have horizontal lines at the tips of these errors ("error bars") and am not sure how to do so.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(1, 10, 10, dtype=int)
y = 2**x
yerr = np.sqrt(y)*10
fig, ax = plt.subplots()
ax.errorbar(x, y, yerr, solid_capstyle='projecting')
ax.grid(alpha=0.5, linestyle=':')
plt.show()
plt.close(fig)
The code generates the figure below. I've played with the solid_capstyle kwarg. Is there a specific kwarg that does what I am trying to do?
And as an example of what I'd like, the figure below:
In case it's relevant, I am using matplotlib 2.2.2
The argument you are looking for is capsize= in ax.errorbar(). The default is None so the length of the cap will default to the value of matplotlib.rcParams["errorbar.capsize"]. The number you give will be the length of the cap in points:
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(1, 10, 10, dtype=int)
y = 2**x
yerr = np.sqrt(y)*10
fig, ax = plt.subplots()
ax.errorbar(x, y, yerr, solid_capstyle='projecting', capsize=5)
ax.grid(alpha=0.5, linestyle=':')
plt.show()
Given the shape file available here: I know can produce the basic map that I need with county labels and even some points on the map (see below). The issue I'm having is that I cannot seem to control the size of the figure with figsize.
Here's what I have:
import geopandas as gpd
import matplotlib.pyplot as plt
%matplotlib inline
figsize=5,5
fig = plt.figure(figsize=(figsize),dpi=300)
shpfileshpfile=r'Y:\HQ\TH\Groups\NR\PSPD\Input\US_Counties\cb_2015_us_county_20m.shp'
c=gpd.read_file(shpfile)
c=c.loc[c['GEOID'].isin(['26161','26093','26049','26091','26075','26125','26163','26099','26115','26065'])]
c['coords'] = c['geometry'].apply(lambda x: x.representative_point().coords[:])
c['coords'] = [coords[0] for coords in c['coords']]
ax=c.plot()
#Control some attributes regarding the axis (for the plot above)
ax.spines['top'].set_visible(False);ax.spines['bottom'].set_visible(False);ax.spines['left'].set_visible(False);ax.spines['right'].set_visible(False)
ax.tick_params(axis='y',which='both',left='off',right='off',color='none',labelcolor='none')
ax.tick_params(axis='x',which='both',top='off',bottom='off',color='none',labelcolor='none')
for idx, row in c.iterrows():
ax.annotate(s=row['NAME'], xy=row['coords'],
horizontalalignment='center')
lat2=[42.5,42.3]
lon2=[-84,-83.5]
#Add another plot...
ax.plot(lon2,lat2,alpha=1,marker='o',linestyle='none',markeredgecolor='none',markersize=15,color='white')
plt.show()
As you can see, I opted to call the plots by the axis name because I need to control attributes of the axis, such as tick_params. I'm not sure if there is a better approach. This seems like a "no-brainer" but I can't seem to figure out why I can't control the figure size.
Thanks in advance!
I just had to do the following:
Use fig, ax = plt.subplots(1, 1, figsize = (figsize))
2.use the ax=ax argument in c.plot()
import geopandas as gpd
import matplotlib.pyplot as plt
%matplotlib inline
figsize=5,5
#fig = plt.figure(figsize=(figsize),dpi=300)
#ax = fig.add_subplot(111)
fig, ax = plt.subplots(1, 1, figsize = (figsize))
shpfileshpfile=r'Y:\HQ\TH\Groups\NR\PSPD\Input\US_Counties\cb_2015_us_county_20m.shp'
c=gpd.read_file(shpfile)
c=c.loc[c['GEOID'].isin(['26161','26093','26049','26091','26075','26125','26163','26099','26115','26065'])]
c['coords'] = c['geometry'].apply(lambda x: x.representative_point().coords[:])
c['coords'] = [coords[0] for coords in c['coords']]
c.plot(ax=ax)
ax.spines['top'].set_visible(False);ax.spines['bottom'].set_visible(False);ax.spines['left'].set_visible(False);ax.spines['right'].set_visible(False)
ax.tick_params(axis='y',which='both',left='off',right='off',color='none',labelcolor='none')
ax.tick_params(axis='x',which='both',top='off',bottom='off',color='none',labelcolor='none')
for idx, row in c.iterrows():
ax.annotate(s=row['NAME'], xy=row['coords'],
horizontalalignment='center')
lat2=[42.5,42.3]
lon2=[-84,-83.5]
ax.plot(lon2,lat2,alpha=1,marker='o',linestyle='none',markeredgecolor='none',markersize=15,color='white')