MongoDB ChangeStream performance - node.js

Is it possible to use change stream for extensive use? I want to watch many collections with many documents with various parameters. The idea is to allow for multiple users to watch data that they are interested in. So not only to show few real-time updates on e.g. some stock data from a single collection or whatever, but to allow a modern web application to be real-time. I've stumbled upon some discussions e.g. this one which suggests, that the feature is not usable for such purpose.
So imagine implementing commonly known social network. Each user would want to have live data on (1) notifications, (2) online friends, (3) friends requests, (4) news feed, (5) comments on news feed posts (maybe one for each post?). This makes at least 5 open change streams per user. If a service would have connected e.g. 10000 users, it makes 50000 active change streams.
Is this mechanism ready for such load? If I understood the discussion (and some others) every change stream watcher creates one connection. Would it be okay to have like tens of thousands of connections? It does not seems like a good design. It seems like it'd be better to watch each collection and do the filtering on a application server, but that is more of a database server's job.
Is there way how to handle such load with mongo db?

Each change stream will require a connection to the server. Assuming your 10000 active users are going to do things like login, post things, read things, comment on other people's things, manage friend lists, etc. you may actually be needing more like 10 connections per user.
Each change stream is essentially an aggregation the maintains a cursor over the operations log. That should work fairly well as long as the server is sufficiently sized to handle:
100,000 simultaneous connections
state for 50,000 long running cursors
10s of thousands of queries per second for those change streams
whatever query rate the other non-changestream reads and writes will need
On MongoDB Atlas you would need at least an M140 instance just to handle that number of connections, with a price tag in the neighborhood of $10K per month.
At that price point, it would probably be more cost effective to design a pub/sub notification service that uses a total of 5 change streams to watch for the different types of changes, and deliver those to users with a push mechanism rather than having every user poll the database directly.

Related

How to avoid database from being hit hard when API is getting bursted?

I have an API which allows other microservices to call on to check whether a particular product exists in the inventory. The API takes in only one parameter which is the ID of the product.
The API is served through API Gateway in Lambda and it simply queries against a Postgres RDS to check for the product ID. If it finds the product, it returns the information about the product in the response. If it doesn't, it just returns an empty response. The SQL is basically this:
SELECT * FROM inventory where expired = false and product_id = request.productId;
However, the problem is that many services are calling this particular API very heavily to check the existence of products. Not only that, the calls often come in bursts. I assume those services loop through a list of product IDs and check for their existence individually, hence the burst.
The number of concurrent calls on the API has resulted in it making many queries to the database. The rate can burst beyond 30 queries per sec and there can be a few hundred thousands of requests to fulfil. The queries are mostly the same, except for the product ID in the where clause. The column has been indexed and it takes an average of only 5-8ms to complete. Still, the connection to the database occasionally time out when the rate gets too high.
I'm using Sequelize as my ORM and the error I get when it time out is SequelizeConnectionAcquireTimeoutError. There is a good chance that the burst rate was too high and it max'ed out the pool too.
Some options I have considered:
Using a cache layer. But I have noticed that, most
of the time, 90% of the product IDs in the requests are not repeated.
This would mean that 90% of the time, it would be a cache miss and it
will still query against the database.
Auto scale up the database. But because the calls are bursty and I don't
know when they may come, the autoscaling won't complete in time to
avoid the time out. Moreover, the query is a very simple select statement and the CPU of the RDS instance hardly crosses 80% during the bursts. So I doubt scaling it would do much too.
What other techniques can I do to avoid the database from being hit hard when the API is getting burst calls which are mostly unique and difficult to cache?
Use cache in the boot time
You can load all necessary columns into an in-memory data storage (redis). Every update in database (cron job) will affect cached data.
Problems: memory overhead of updating cache
Limit db calls
Create a buffer for ids. Store n ids and then make one query for all of them. Or empty the buffer every m seconds!
Problems: client response time extra process for query result
Change your database
Use NoSql database for these data. According to this article and this one, I think choosing NoSql database is a better idea.
Problems: multiple data stores
Start with a covering index to handle your query. You might create an index like this for your table:
CREATE INDEX inv_lkup ON inventory (product_id, expired) INCLUDE (col, col, col);
Mention all the columns in your SELECT in the index, either in the main list of indexed columns or in the INCLUDE clause. Then the DBMS can satisfy your query completely from the index. It's faster.
You could start using AWS lambda throttling to handle this problem. But, for that to work the consumers of your API will need to retry when they get 429 responses. That might be super-inconvenient.
Sorry to say, you may need to stop using lambda. Ordinary web servers have good stuff in them to manage burst workload.
They have an incoming connection (TCP/IP listen) queue. Each new request coming in lands in that queue, where it waits until the server software accept the connection. When the server is busy requests wait in that queue. When there's a high load the requests wait for a bit longer in that queue. In nodejs's case, if you use clustering there's just one of these incoming connection queues, and all the processes in the cluster use it.
The server software you run (to handle your API) has a pool of connections to your DBMS. That pool has a maximum number of connections it it. As your server software handles each request, it awaits a connection from the pool. If no connection is immediately available the request-handling pauses until one is available, then handles it. This too smooths out the requests to the DBMS. (Be aware that each process in a nodejs cluster has its own pool.)
Paradoxically, a smaller DBMS connection pool can improve overall performance, by avoiding too many concurrent SELECTs (or other queries) on the DBMS.
This kind of server configuration can be scaled out: a load balancer will do. So will a server with more cores and more nodejs cluster processes. An elastic load balancer can also add new server VMs when necessary.

Firebase Admin - practical limit on the number of listeners

I am working with firebase-admin on Node.js, and initially we started with denormalizing most of the data. As the project grew, we started duplicating data for different views in one Node process. On one hand, this was done to simplify the client access to data, on the other hand to support more complex queries.
We are now running into a scenario where we need a lot of individual listeners. One example could be to listen to child_added on "/chats/$uid/" (for each user $uid) to compute certain statistics on on each user's chats. Obviously, the number of listeners then grows with the number of users.
So far everything works well, but how well does this approach scale? And more importantly, is there a practical limit on the number of listeners?

Is this MEAN stack design-pattern suitable at the 1,000-10,000 user scale?

Let's say that when a user logs into a webapp, he sees a list of information.
Let's say that list of information is served by one of two dynos (via heroku), but that the list of information originates from a single mongo database (i.e., the nodejs dynos are just passing the mongo information to a user when he logs into the webapp).
Question: Suppose I want to make it possible for a user to both modify and add to that list of information.
At a scale of 1,000-10,000 users, is the following strategy suitable:
User modifies/adds to data; HTTP POST sent to one of the two nodejs dynos with the updated data.
Dyno (whichever one it may be) takes modification/addition of data and makes a direct query into the mongo database to update the data.
Dyno sends confirmation back to the client that the update was successful.
Is this OK? Would I have to likely add more dynos (heroku)? I'm basically worried that if a bunch of users are trying to access a single database at once, it will be slow, or I'm somehow risking corrupting the entire database at the 1,000-10,000 person scale. Is this fear reasonable?
Short answer: Yes, it's a reasonable fear. Longer answer, depends.
MongoDB will queue the responses, and handle them in the order it receives. Depending on how much of it is being served from memory, it may or maybe not be fast enough.
NodeJS has the same design pattern, where it will queue responses it doesn't process, and execute them when the resources become available.
The only way to tell if performance is being hindered is by monitoring it, and seeing if resources consistently hit a threshold you're uncomfortable with passing. On the upside, during your discovery phase your clients will probably only notice a few milliseconds of delay.
The proper way to implement that is to spin up a new instance as the resources get consumed to handle the traffic.
Your database likely won't corrupt, but if your data is important (and why would you collect it if it isn't?), you should be creating a replica set. I would probably go with a replica set of data before I go with a second instance of node.

SocketIO scaling architecture and large rooms requirements

We are using socketIO on a large chat application.
At some points we want to dispatch "presence" (user availability) to all other users.
io.in('room1').emit('availability:update', {userid='xxx', isAvailable: false});
room1 may contains a lot of users (500 max). We observe a significant raise in our NodeJS load when many availability updates are triggered.
The idea was to use something similar to redis store with Socket IO. Have web browser clients to connect to different NodeJS servers.
When we want to emit to a room we dispatch the "emit to room1" payload to all other NodeJS processes using Redis PubSub ZeroMQ or even RabbitMQ for persistence. Each process will itself call his own io.in('room1').emit to target his subset of connected users.
One of the concern with this setup is that the inter-process communication may become quite busy and I was wondering if it may become a problem in the future.
Here is the architecture I have in mind.
Could you batch changes and only distribute them every 5 seconds or so? In other words, on each node server, simply take a 'snapshot' every X seconds of the current state of all users (e.g. 'connected', 'idle', etc.) and then send that to the other relevant servers in your cluster.
Each server then does the same, every 5 seconds or so it sends the same message - of only the changes in user state - as one batch object array to all connected clients.
Right now, I'm rather surprised you are attempting to send information about each user as a packet. Batching seems like it would solve your problem quite well, as it would also make better use of standard packet sizes that are normally transmitted via routers and switches.
You are looking for this library:
https://github.com/automattic/socket.io-redis
Which can be used with this emitter:
https://github.com/Automattic/socket.io-emitter
About available users function, I think there are two alternatives,you can create a "queue Users" where will contents "public data" from connected users or you can use exchanges binding information for show users connected. If you use an "user's queue", this will be the same for each "room" and you could update it when an user go out, "popping" its state message from queue (Although you will have to "reorganize" all queue message for it).
Nevertheless, I think that RabbitMQ is designed for asynchronous communication and it is not very useful approximation have a register for presence or not from users. I think it's better for applications where you don't know when the user will receive the message and its "real availability" ("fire and forget architectures"). ZeroMQ require more work from zero but you could implement something more specific for your situation with a better performance.
An publish/subscribe example from RabbitMQ site could be a good point to begin a new design like yours where a message it's sent to several users at same time. At summary, I will create two queues for user (receive and send queue messages) and I'll use specific exchanges for each "room chat" controlling that users are in each room using exchange binding's information. Always you have two queues for user and you create exchanges to binding it to one or more "chat rooms".
I hope this answer could be useful for you ,sorry for my bad English.
This is the common approach for sharing data across several Socket.io processes. You have done well, so far, with a single process and a single thread. I could lamely assume that you could pick any of the mentioned technologies for communicating shared data without hitting any performance issues.
If all you need is IPC, you could perhaps have a look at Faye. If, however, you need to have some data persisted, you could start a Redis cluster with as many Redis masters as you have CPUs, though this will add minor networking noise for Pub/Sub.

Instagram real-time API POST rate

I'm building an application using tag subscriptions in the real-time API and have a question related to capacity planning. We may have a large number of users posting to a subscribed hashtag at once, so the question is how often will the API actually POST to our subscription processing endpoint? E.g., if 100 users post to #testhashtag within a second or two, will I receive 100 POSTs or does the API batch those together as one update? A related question: is there a maximum rate at which POSTs can be sent (e.g., one per second or one per ten seconds, etc.)?
The Instagram API seems to lack detailed information about both how many updates are sent and what are the rate limits. From the [API docs][1]:
Limits
Be nice. If you're sending too many requests too quickly, we'll send back a 503 error code (server unavailable).
You are limited to 5000 requests per hour per access_token or client_id overall. Practically, this means you should (when possible) authenticate users so that limits are well outside the reach of a given user.
In other words, you'll need to check for a 503 and throttle your application accordingly. No information I've seen for how long they might block you, but it's best to avoid that completely. I would advise you manage this by placing a rate limiting mechanism on your own code, such as pushing your API requests through a queue with rate control. That will also give you the benefit of a retry of you're throttled so you won't lose any of the updates.
Moreover, a mechanism such as a queue in the case of real-time updates is further relevant because of the following from the API docs:
You should build your system to accept multiple update objects per payload - though often there will be only one included. Also, you should acknowledge the POST within a 2 second timeout--if you need to do more processing of the received information, you can do so in an asynchronous task.
Regarding the number of updates, the API can send you 1 update or many. The problem with this is you can absolutely murder your API calls because I don't think you can batch calls to specific media items, at least not using the official python or ruby clients or API console as far as I have seen.
This means that if you receive 500 updates either as 1 request to your server or split into many, it won't matter because either way, you need to go and fetch these items. From what I observed in a real application, these seemed to count against our quota, however the quota itself seems to consume resources erratically. That is, sometimes we saw no calls at all consumed, other times the available calls dropped by far more than we actually made. My advice is to be conservative and take the 5000 as a best guess rather than an absolute. You can check the remaining calls by parsing one of the headers they send back.
Use common sense, don't be stupid, and using a rate limiting mechanism should keep you safe and have the benefit of dealing with failures either due to outages (this happens more than you may think), network hicups, and accidental rate limiting. You could try to be tricky and use different API keys in a pooling mechanism, but this is likely a violation of the TOS and if they are doing anything via IP, you'd have to split this up to different machines with different IPs.
My final advice would be to restructure your application to not completely rely on the subscription mechanism. It's less than reliable and very expensive API wise. It's only truly useful if you just need to do something in your app that doesn't require calling back to Instgram, your number of items is small, or you can filter out the majority of items to avoid calling back to Instagram accept when a specific business rule is matched.
Instead, you can do things like query the tag or the user (ex: recent media) and scale it out that way. Normally this allows you to grab 100 items with 1 request rather than 100 items with 100 requests. If you really want to be cute, you could at least merge the subscription notifications asynchronously and combine the similar ones into a single batched request when you combine the duplicate characteristics such as tag into a single bucket. Sort of like a map/reduce but on a small data set. You could of course do an actual map/reduce from time-to-time on your own data as another way of keeping things in async. Again, be careful not to thrash instagram, but rather just use map/reduce to batch out your calls in a way that's useful to your app.
Hope that helps.

Resources