I want to model a simple system using a Class Diagram:
I have 3 possible classes: Company, Employee, Manager.
The Company must have 20 Employees (aggregation?).
The Company must have 1 Manager (aggregation?).
A Manager is an Employee (generalization?).
Each Employee can only be in 1 Company.
In other words, I want to limit this system to have 20 Employees, 1 of which must be a Manager. However ONLY 1 can be a Manager. This would make it so that there are 19 Employees and 1 Manager objects at all times.
I have the setup in my head of how I want this system to work, but I can't get the model quite right. This is what I got:
I feel like I am very close, but my issue is that although the Company 1 to 1 relationship to the Manager seems correct, the 1 to 19 to the Employee seems off. Since a Manager is an Employee, I have no way of limiting how many of those 19 Employees are Managers. I am trying to do this without splitting Employees up into Non-Manager and Manager classes.
Am I on the right track? Is there something I am missing? Or is it clear enough that 19 MUST be Employee objects and 1 MUST be Manager object?
The problem
Your model has a weakness: a Manager of one Company could be Employee of another, because nothing in your model says that the employment relationship with the Company is the same for both classes.
Why? If you apply the UML generalization semantics:
Employee has an association with Company,
Manager is a specialization of Employee, and therefore inherits all its properties, operations and associations, including the association with Company.
Manager has in addition its own association with the Company. So it has two distinct associations: the inherited one and its own one.
Potential solutions
It would be helpful to label the ends of the association, e.g. employer/ employee and company/manager:
The simplest solution could be to remove the association between Manager and Company, since it is inherited. But there is no easy way to tell that there must be a Manager among the employees. Moreover, there wouldn't be an easy way to find the Manager of a Company. So this solution does not appear appropriate.
Another solution would be to add a constraint that specifies that for the Manager, manager.company is the same than employee.employer. Since a Manager manages one and only one company, no other manager could by deduction exist among the employees. But this sounds somewhat artificial.
The best solution in my view is therefore to keep both associations but use UML smeantics to explain that company {subsets employer} and manager {subsets employee} Be aware that this solution requires 20 employees, since it makes clear that the manager is one amont the 20.
If you're interested to know more about subsetting, I advise you this artile about redefinition, specialization and subsetting of associations, which could also inspire you other variants.
Minor remarks
The aggregation are fine. However, aggregation is a modelling placebo since the UML specs clearly say page 110:
Precise semantics of shared aggregation varies by application area and modeler.
Therefore, I'd suggest to avoid them when possible. You could therefore as well use normal UML associations. Especially for the manager where there is only one.
Another remark made by qwerty_so in the comments is that the + should be removed in +has : The + is about public visibility. It’s not the association itself that is public or private, but the association end (e.g. employer and employee in my proposal).
Related
I am modeling a course management system with the following requirements:
2 roles: Student can choose course; Administrator can make courses and then make groups for course, based on list of students who chose that course and based on list of tutors for that course.
In one course students can go only in one group, and teacher can teach more groups in one course. But student can go in 1 or more courses.
This diagram is a sketch of a class diagram. There is too much redundancy and I don't know how to solve it. Please help me to model my domain and ignore the mistakes in UML syntax or multiplicitycardinality.
More precisely, how can I make association between students and groups, and tutors and groups without redundancy, because I already have associations with courses?
Let's focus indeed on the domain model:
The direct association between Student and Course corresponds to the student's choice. The choice may or may not be fulfilled. And if it is fulfilled, it's only when the groups are made.
The indirect association between Student and Course via Group corresponds not only to fulfilled choices, but also to practical organisation of courses.
The two paths that exist are not redundant, but the representation of two different realities.
For the tutor, it's similar: the direct association tells what the tutor is able to do, and the indirect one tells what he/she has to do. So the model looks fine in this regard.
In some cases you could simplify (hint: not here)
In some situation a choice/plan can be combined with a fulfilled choice/implementation, by merging associations. For example, if there wasn't your group requirement, you could have only one association class between Student and Course and use a state of your association class to make the difference. But this will not work here, given your requirements.
You could also trick with the requirements. For example, you could have for every course a dummy group that corresponds to students that chose the course and are not assigned to a group. But shortcuts in the design can (and often will) backfire. Here for example, it would add complexity (need to create a dummy group for every course, make a difference between the dummy group and the real groups in almost every activity). Moreover, this trick would constrain your solution. For instance, not having an association class for the choice will prevent from enabling the students to prioritise their courses or providr other elements that facilitate the creation of groups that do not yet exist (e.g. pre-existing skill level).
In summary: your model should primarily aim at addressing the requirements. Premature optimisation is the root of all evil, in modelling as well.
I want to start a project in JEE and I need to confirm about my class diagram. I need to know if the methods used are correct and if the composition I used is correct or not.
This is my class diagram:
The project is about an online sales store, that wants to set up a management tool to sell products, and to manage its products. This tool must include the following features:
Identification module: identification of clients, managers, supervisors
Sales module: make purchases for users
Product Management Module: Adding / Deleting Products
Statistical module: visualization of sales statistics
Functional Specifications
It is necessary to act on the application, to connect to the application with a user ID and password. To facilitate its use and in order to avoid any mishandling thereafter, here is the solution:
User Profile:
The user will be able to visualize the products sold by My Online Races. The user can place an order, provided that he has registered with the site My Online Races.
Manager profile:
The manager will be able to manage the products:
Add / Edit / Delete Products
Add / Edit / Delete category
These data insertions can be made using CSV or XML files, but also through various forms on the website.
The manager will be able to view the sales statistics.
Supervisor Profile:
The supervisor can add managers whose roles are specified above.
The supervisor will be able to view the sales statistics.
The supervisor will be able to view all the actions performed by the managers, a sort of audit trail.
Well I wish to know already if you have remarks about my design. As well as I have a confusion for several methods, for example adding, modifying and deleting a product. Should I put them in the manager or product class? Is the composition I put correct or should I remove it?
Quick review of the diagram and advices
First some minor remarks about class naming: Ordered should be called Order.
The composition between Article and Order is just wrong (not from a formal view, but from the meaning it conveys). Use a normal one-to-many association: it would reflect much better the real nature of the relation between the two classes. Please take into account that a new article may exist without having been ordered, so it shoud be 0..* instead of 1..*
+belongs and +do in the middle of an association are syntactically incorect. You should use a plain triangle instead (or nothing at all). The triangle should be oriented in the reading direction Person do |> Order and Article belongs to |> Category
The methods seem ok. You do not need to add a suffix.
How shall objects be managed (created/updated/deleted) ?
A more advanced concern is not about the diagram but about how you want to organise persistence (i.e. database storage):
do you really want the object to be an active record, that is an object that adds, updates and deletes itself (to the database) ? It's simple to set up, works well, but makes the class dependent on the underlying database implementation and thus makes maintenance more difficult;
or wouldn't it be better to use a repository for each object ? In this case the repository acts as a collection that manages all the database operations. The domain object (Article, order, User, ...) then have nothing to know about the database, wich leads to more maintainable code.
But this is a broader architectural question. If it's just for a first experimental project with JEE, you can very well use the active records. It's simpler to set up. Be sure however in this case to disambiguate the Add/Update/Delete on Person, since it currently may give the impression that any person can add anyone.
Improvement of the model
A final remark, again not about the diagram itself, is about the domain. Your model considers that an Order is about a single Article.
In reality however, orders are in general about one or several articles: if this would also be the case here, your Order would become an OrderItem and the real Order would be inserted between Person and OrderItem. You could then make the relation between Order and OrderItem a composition (i.e: OrderItem is owned by Order, which has responsibility for creating its items, and the items have no sense without the related order).
In many applications, I deal with users and finance companies (as an example) and I have long been struggling to model the relationship between the two according to Domain Driven Design principles.
In my system I can do the following:
Add a user to an existing finance company.
Add a finance company to an existing user.
I believe both are aggregate roots... Finance Company and User.
How do I model the relationship between the 2? Is it FinanceCompany.Users? or User.FinanceCompanies? Is it neither? Or am I missing knowledge of some key DDD concept(s)? The problem is if I choose one way over the other, the code is more understandable / clear from one aggregate root entry point, but not the other. Sometimes there are cases where it makes more sense to navigate to a Finance Company and add users to it, and other times there are cases where it makes more sense to navigate to a specific user and add finance companies to the user.
Is there some better way to approach this, maybe through repository methods? Is there some key concept I am not getting or understanding here? It doesn't feel right to assume the relationship between Finance Company and User belongs under either of the 2 ARs. When I store the relationship I have to store it in a table named FinanceCompanyUsers or UserFinanceCompanies, but it still doesn't seem clear.
Would I have code such as FinanceCompany.AddUser() and User.AddFinanceCompany()? or is there some completely different approach for relationships such as this?
You have already determined that both User and FinanceCompany are aggregates so each has its own life-cycle.
The problem with many domains is that we don't have a complete understanding of the relationships. As another example we can take an Order and a Product. Both are aggregates but would we have Order.AddProduct() or Product.AddOrder()? In this case it seems pretty obvious in that an Order contains a limited subset of Product entries whereas a Product may very well contain many orders and we are not really too interested in that relationship since it is a rather weak relationship. A Product can exist and be valid without any orders attached but an Order is pretty useless without at least one product entry. This means that the Order has an invariant imposed in terms of its OrderItem entries. In addition to this we have enough knowledge about this hackneyed example that we know we are going to need an associative entity (in relational theory speak) since we need additional information regarding the relationship and entering the fray would be our OrderItem table. Curiously I have not seen it called OrderProduct.
The guidance I would suggest is to pick the most appropriate side.
However, if no side is a true winner and both aggregates can exist without a relationship to the other in terms of an invariant perhaps the relationship itself is an aggregate as you have certainly alluded to. Perhaps it isn't only a UserFinanceCompany aggregate but perhaps there is a concept that is missing from the ubiquitous language that the domain experts refer to. Perhaps something like Auditor or some such that represents that relationship. This is akin to the OrderItem or OrderLine concept as opposed to OrderProduct.
For some time I am dealing with Domain-Driven Design. Unfortunately I have some problems regarding the Aggregate.
Say, I like to model the structure of an university. The university has some departments (faculties) and every department has some classes. There is a rule that every department needs to be unique and so every class in it. For instance the names of the classes needs to be unique. If I understand it right, then "University" seems to be my aggregate root and "department" and "class" are entities within this aggregate.
There is another aggregate root "Professor", because they are globally accessible. They will be assigned to a class. I´m unsure if it is allowed because an aggregate root should only point to another aggregate root and not to its content.
How to handle this?
Appreciate your help,
thanks in advance!
Say, I like to model the structure of an university. The university has some departments (faculties) and every department has some classes. There is a rule that every department needs to be unique and so every class in it. For instance the names of the classes needs to be unique.
Really? why? What's the business value of that rule? What does it cost the business (the university) if there happen to be two classes with the same name. Does that mean the same name across all time, or just during a given semester?
Part of the point of DDD is that the design of the solution requires exploration of the "ubiquitous language" to get a full understanding of the requirement.
In other words, you may be having trouble finding a good fit for this requirement in the design because you haven't yet discovered all of the entities that you need to make it work the way the business experts expect.
Udi Dahan points out that the uniqueness rule may not belong in the domain at all:
Rules that are not part of genuine domain logic do not have to be implemented in the domain model, suggested he, because they do not model the domain.
So if you have a constraint like this, but the constraint isn't a consequence of the domain itself, then the constraint can be correctly implemented elsewhere.
Greg Young has also written about set validation, specifically addressing concerns about eventual consistency.
But broadly, yes -- if you really have a collection of entities, and a domain rules that span multiple elements in the collection, then you need some aggregate that maintains the integrity of the boundary that the collection lives in.
The entities aren't necessarily what you think. For instance, if you need names to be unique, and the rest of the class entity is just along for the ride, then you may be able to simplify the rules by creating a name registry aggregate; Professors reserve names for their classes, and if the reservation is available, then the reserved name can be applied to the class entity.
If your core business really were naming things, with lots of special invariants to consider, you might build out a big model around this. But that's not particularly likely; perhaps you can just slap a table or two into a relational database -- that's a good solution for a set validation problem -- and get on with the valuable part of the project.
There is another aggregate root "Professor", because they are globally accessible. They will be assigned to a class. I´m unsure if it is allowed because an aggregate root should only point to another aggregate root and not to its content.
class.assign(professorId);
is the usual sort of answer here -- you pass around the surrogate key that identifies the aggregate root. Every entity in your domain should have one.
A couple of cautions here: I have found that real world entities (people, in particular) aren't a useful starting point for figuring out what aggregates are for. Primarily, because they end up being representations, primarily, of data where the invariant is enforced outside the domain model.
Also, I've found that starting from the nouns - class, department, professor - tends to put the focus on CRUD, which generally isn't a very interesting problem.
Instead, I recommend thinking about doing something useful -- a use case where there are business rules to enforce, when the business model gets to say "no, the business won't let you do that right now".
Ask yourself these questions:
How many universities will be in your system? If this is only one, it is not your aggregate root.
If you have multiple universities in your system, would be someone working across universities? May be universities are your system tenants?
What happens with a class if some department is dissolved? Will it immediately disappear? I doubt it.
The same as above with university to department relationship
It is not a problem with a Department to hold reference to its classes as a list of value objects that will contain the Class aggregate root id and the class name. The same is valid for departments dealing with their classes.
Vernon's Effective Aggregate Design might help too.
I'm not very experienced in DDD either but here some tips I use to use:
Is it possible to have a Class without a Department assigned? If that is the case then the Department is the aggregate root and Class is another aggregate with a reference to the root, the Department. You can even define a factory method "addClass()" within your Department with the info that a Class needs to be created, so nobody should be allowed to create a Class without a Department.
Why defining a Class a an Aggregate instead of a Value Object? Because Value Objects are distinguished by their properties' value rather than an ID. I would say that even having two Classes with the same name, same students, same info, etc, etc. the business would still want to differentiate each one. It is not the same with a 1 cent coin which with you only care about the value (given by the color, size, weight,...) but you can always replace it with another one with same attributes' value, that is 1 cent. Also assigning another Professor to the class, the class remains the same, it is not immutable as a Value Object should be.
I guess a Professor must be uniquely identified, and he can maybe be assigned to different Classes or even Departments. So to me it is another Aggregate root separated from the department.
I am trying to draw a conceptual class diagram. In my system, I have one person who can be performing 2 roles. One being "teacher" and other being "student". The same person could be a teacher in one instance and the same person could be a student in another instance. In such a situation, is it good to depict them as 2 separate classes (in my conceptual diagram)?
Please advise.
Thanks
Unless the person is teaching themself, don't get caught up in trying to show relationships that cross a use-case boundary. Validate the links for each scenario separately; just realize that not all connections will be used for every scenario.
People fill roles. Try
Person associated with EducationRole
EducationRole has subclasses of 'Student' and 'Teacher'
Here is a diagram.
They can change the role they play depending on the situation. If you need to show a person teaching themself then create a subclass of EducationRole named 'Autodiadact' which just means self-teacher.
A commenter asked about changing the role using a method and I'd like to include the answer here.
So, yes you could code the ability to change the role in a method but back up and ask the bigger question, why are we changing the role? A teacher is becoming a student or a student is becoming a teacher, either way the model as shown allows a Person to have many EducationRoles (which is what the asterisk denotes) at the same time so there isn't really a need to change the role but support a person with multiple possible roles.
In the conceptual model you are attempting to illustrate relationships between any valid state of the system, not necessarily how the change might be executed (using a method).