Apply edit to strings - string

I have an practice that gives input and wants to get the 'hello'by deleting letters and if it get print 'YES' and if not print 'NO'.python 3
i write this but i do not know why it is not work sometime
def edit(x):
for h in x:
if h in ('a','q','z','w','s','x','d','c','r','f','v','t','g','b','y','n','u','j','m','i','k','p'):
y = x.replace(h,'')
return y
x =input()
x1='a'.join(x)
y = edit(x1)
if y==('hello'):
print('YES')
elif y.count('l')>=2 and y.count('h')>=1 and y.count('e')>=1 and y.count('o')>=1:
if y.startswith('h') and y.endswith('o'):
y1=y.replace('h','')
if y1.startswith('e'):
y2=y1.replace('e','')
if y2.startswith('l') and y2.endswith('o'):
print('YES')
else:
print('NO')
for example
aahhelllo
YES
asdxhhhellooooo
Process finished with exit code 0

The error is in your edit(x) function. It iterates through characters of the string in the x variable and checks if the character is in the list of 22; if so, it removes all instances of a chosen character from the string and stores a result in the y variable.
Note: on every iteration it takes the x variable; it does not take y, which is a result of the previous modification, but it takes an original input parameter again and again. Finaly, you get y from the last modification performed.
In "aahhelllo" there is only one character to remove: 'a', so only one substitution is done and its result is "hhello", as expected.
OTOH, in "aasdxhhhellooooo" there are four characters to be removed, so:
in the first iteration y is assigned a value of "aasdxhhhellooooo".replace('a','') which is "sdxhhhellooooo";
in the second iteration you remove 'a' again (because it was not deleted from x);
in the third you assign y="aasdxhhhellooooo".replace('s','') which is "aadxhhhellooooo";
and so on, until the last modification done for h=='x', which makes y="aasdxhhhellooooo".replace('x',''), which is "aasdhhhellooooo".
And that is the result returned from edit(x) in the second case.

Related

Why along with output it is showing NONE each time? [duplicate]

What does the return statement do? How should it be used in Python?
How does return differ from print?
See also
Often, people try to use print in a loop inside a function in order to see multiple values, and want to be able to use the results from outside. They need to be returned, but return exits the function the first time. See How can I use `return` to get back multiple values from a loop? Can I put them in a list?.
Often, beginners will write a function that ultimately prints something rather than returning it, and then also try to print the result, resulting in an unexpected None. See Why is "None" printed after my function's output?.
Occasionally in 3.x, people try to assign the result of print to a name, or use it in another expression, like input(print('prompt:')). In 3.x, print is a function, so this is not a syntax error, but it returns None rather than what was displayed. See Why does the print function return None?.
Occasionally, people write code that tries to print the result from a recursive call, rather than returning it properly. Just as if the function were merely called, this does not work to propagate the value back through the recursion. See Why does my recursive function return None?.
Consider How do I get a result (output) from a function? How can I use the result later? for questions that are simply about how to use return, without considering print.
The print() function writes, i.e., "prints", a string in the console. The return statement causes your function to exit and hand back a value to its caller. The point of functions in general is to take in inputs and return something. The return statement is used when a function is ready to return a value to its caller.
For example, here's a function utilizing both print() and return:
def foo():
print("hello from inside of foo")
return 1
Now you can run code that calls foo, like so:
if __name__ == '__main__':
print("going to call foo")
x = foo()
print("called foo")
print("foo returned " + str(x))
If you run this as a script (e.g. a .py file) as opposed to in the Python interpreter, you will get the following output:
going to call foo
hello from inside foo
called foo
foo returned 1
I hope this makes it clearer. The interpreter writes return values to the console so I can see why somebody could be confused.
Here's another example from the interpreter that demonstrates that:
>>> def foo():
... print("hello within foo")
... return 1
...
>>> foo()
hello within foo
1
>>> def bar():
... return 10 * foo()
...
>>> bar()
hello within foo
10
You can see that when foo() is called from bar(), 1 isn't written to the console. Instead it is used to calculate the value returned from bar().
print() is a function that causes a side effect (it writes a string in the console), but execution resumes with the next statement. return causes the function to stop executing and hand a value back to whatever called it.
Think of the print statement as causing a side-effect, it makes your function write some text out to the user, but it can't be used by another function.
I'll attempt to explain this better with some examples, and a couple definitions from Wikipedia.
Here is the definition of a function from Wikipedia
A function, in mathematics, associates one quantity, the argument of the function, also known as the input, with another quantity, the value of the function, also known as the output..
Think about that for a second. What does it mean when you say the function has a value?
What it means is that you can actually substitute the value of a function with a normal value! (Assuming the two values are the same type of value)
Why would you want that you ask?
What about other functions that may accept the same type of value as an input?
def square(n):
return n * n
def add_one(n):
return n + 1
print square(12)
# square(12) is the same as writing 144
print add_one(square(12))
print add_one(144)
#These both have the same output
There is a fancy mathematical term for functions that only depend on their inputs to produce their outputs: Referential Transparency. Again, a definition from Wikipedia.
Referential transparency and referential opaqueness are properties of parts of computer programs. An expression is said to be referentially transparent if it can be replaced with its value without changing the behavior of a program
It might be a bit hard to grasp what this means if you're just new to programming, but I think you will get it after some experimentation.
In general though, you can do things like print in a function, and you can also have a return statement at the end.
Just remember that when you use return you are basically saying "A call to this function is the same as writing the value that gets returned"
Python will actually insert a return value for you if you decline to put in your own, it's called "None", and it's a special type that simply means nothing, or null.
I think the dictionary is your best reference here
Return and Print
In short:
return gives something back or replies to the caller of the function while print produces text
In python, we start defining a function with def, and generally - but not necessarily - end the function with return.
Suppose we want a function that adds 2 to the input value x. In mathematics, we might write something like f(x) = x + 2, describing that relationship: the value of the function, evaluated at x, is equal to x + 2.
In Python, it looks like this instead:
def f(x):
return x + 2
That is: we define a function named f, which will be given an x value. When the code runs we figure out x + 2, and return that value. Instead of describing a relationship, we lay out steps that must be taken to calculate the result.
After defining the function, it can be called with whatever argument you like. It doesn't have to be named x in the calling code, and it doesn't even have to be a variable:
print f(2)
>>> 4
We could write the code for the function in some other ways. For example:
def f(x):
y = x + 2
return y
or even
def f(x):
x = x + 2
return x
Again, we are following steps in order - x = x + 2 changes what x refers to (now it means the result from the sum), and that is what gets returned by return x (because that's the value *at the time that the return happens).
return means "output this value from this function".
print means "send this value to (generally) stdout"
In the Python REPL, a function's return value will be output to the screen by default (this isn't the same as printing it). This output only happens at the REPL, not when running code from a .py file. It is the same as the output from any other expression at the REPL.
This is an example of print:
>>> n = "foo\nbar" #just assigning a variable. No output
>>> n #the value is output, but it is in a "raw form"
'foo\nbar'
>>> print(n) #the \n is now a newline
foo
bar
>>>
This is an example of return:
>>> def getN():
... return "foo\nbar"
...
>>> getN() #When this isn't assigned to something, it is just output
'foo\nbar'
>>> n = getN() # assigning a variable to the return value. No output
>>> n #the value is output, but it is in a "raw form"
'foo\nbar'
>>> print(n) #the \n is now a newline
foo
bar
>>>
This answer goes over some of the cases that have not been discussed above.
The return statement allows you to terminate the execution of a function before you reach the end. This causes the flow of execution to immediately return to the caller.
In line number 4:
def ret(n):
if n > 9:
temp = "two digits"
return temp #Line 4
else:
temp = "one digit"
return temp #Line 8
print("return statement")
ret(10)
After the conditional statement gets executed the ret() function gets terminated due to return temp (line 4).
Thus the print("return statement") does not get executed.
Output:
two digits
This code that appears after the conditional statements, or the place the flow of control cannot reach, is the dead code.
Returning Values
In lines number 4 and 8, the return statement is being used to return the value of a temporary variable after the condition has been executed.
To bring out the difference between print and return:
def ret(n):
if n > 9:
print("two digits")
return "two digits"
else :
print("one digit")
return "one digit"
ret(25)
Output:
two digits
'two digits'
Note that return can also be used for control flow. By putting one or more return statements in the middle of a function, we can say: "stop executing this function. We've either got what we wanted or something's gone wrong!"
For example, imagine trying to implement str.find(sub) if we only had str.index(sub) available (index raises a ValueError if the substring isn't found, whereas find returns -1).
We could use a try/except block:
def find(s: str, sub: str) -> int:
try:
return s.index(sub)
except ValueError:
return -1
This is fine, and it works, but it's not very expressive. It's not immediately clear what would cause str.index to raise a ValueError: a reader of this code must understand the workings of str.index in order to understand the logic of find.
Rather than add a doc-string, saying "...unless sub isn't found, in which case return -1", we could make the code document itself, like this:
def find(s: str, sub: str) -> int:
if sub not in s:
return -1
return s.index(sub)
This makes the logic very clear.
The other nice thing about this is that once we get to return s.index(sub) we don't need to wrap it in a try/except because we already know that the substring is present!
See the Code Style section of the Python Guide for more advice on this way of using return.
To put it as simply as possible:
return makes the value (a variable, often) available for use by the caller (for example, to be stored by a function that the function using return is within). Without return, your value or variable wouldn't be available for the caller to store/re-use.
print, by contrast, prints to the screen - but does not make the value or variable available for use by the caller.
Difference between "return" and "print" can also be found in the following example:
RETURN:
def bigger(a, b):
if a > b:
return a
elif a <b:
return b
else:
return a
The above code will give correct results for all inputs.
PRINT:
def bigger(a, b):
if a > b:
print a
elif a <b:
print b
else:
print a
NOTE: This will fail for many test cases.
ERROR:
----
FAILURE: Test case input: 3, 8.
Expected result: 8
FAILURE: Test case input: 4, 3.
Expected result: 4
FAILURE: Test case input: 3, 3.
Expected result: 3
You passed 0 out of 3 test cases
Here is my understanding. (hope it will help someone and it's correct).
def count_number_of(x):
count = 0
for item in x:
if item == "what_you_look_for":
count = count + 1
return count
So this simple piece of code counts number of occurrences of something. The placement of return is significant. It tells your program where do you need the value. So when you print, you send output to the screen. When you return you tell the value to go somewhere. In this case you can see that count = 0 is indented with return - we want the value (count + 1) to replace 0.
If you try to follow logic of the code when you indent the return command further the output will always be 1, because we would never tell the initial count to change.
I hope I got it right.
Oh, and return is always inside a function.
return should be used for recursive functions/methods or you want to use the returned value for later applications in your algorithm.
print should be used when you want to display a meaningful and desired output to the user and you don't want to clutter the screen with intermediate results that the user is not interested in, although they are helpful for debugging your code.
The following code shows how to use return and print properly:
def fact(x):
if x < 2:
return 1
return x * fact(x - 1)
print(fact(5))
This explanation is true for all of the programming languages not just python.
return is part of a function definition, while print outputs text to the standard output (usually the console).
A function is a procedure accepting parameters and returning a value. return is for the latter, while the former is done with def.
Example:
def timestwo(x):
return x*2
Best thing about return function is you can return a value from function but you can do same with print so whats the difference ?
Basically return not about just returning it gives output in object form so that we can save that return value from function to any variable but we can't do with print because its same like stdout/cout in C Programming.
Follow below code for better understanding
CODE
def add(a, b):
print "ADDING %d + %d" % (a, b)
return a + b
def subtract(a, b):
print "SUBTRACTING %d - %d" % (a, b)
return a - b
def multiply(a, b):
print "MULTIPLYING %d * %d" % (a, b)
return a * b
def divide(a, b):
print "DIVIDING %d / %d" % (a, b)
return a / b
print "Let's do some math with just functions!"
age = add(30, 5)
height = subtract(78, 4)
weight = multiply(90, 2)
iq = divide(100, 2)
print "Age: %d, Height: %d, Weight: %d, IQ: %d" % (age, height, weight, iq)
# A puzzle for the extra credit, type it in anyway.
print "Here is a puzzle."
what = add(age, subtract(height, multiply(weight, divide(iq, 2))))
print "That becomes: ", what, "Can you do it by hand?"
We are now doing our own math functions for add, subtract, multiply, and divide. The important thing to notice is the last line where we say return a + b (in add). What this does is the following:
Our function is called with two arguments: a and b.
We print out what our function is doing, in this case "ADDING."
Then we tell Python to do something kind of backward: we return the addition of a + b. You might say this as, "I add a and b then return them."
Python adds the two numbers. Then when the function ends, any line that runs it will be able to assign this a + b result to a variable.
The simple truth is that print and return have nothing to do with each other. print is used to display things in the terminal (for command-line programs).1 return is used to get a result back when you call a function, so that you can use it in the next step of the program's logic.
Many beginners are confused when they try out code at Python's interpreter prompt2, like
>>> def example():
... return 1
...
>>> example()
1
The value was displayed; doesn't this mean that return displays things? No. If you try the same code in a .py file, you can see for yourself that running the script doesn't cause the 1 to display.
This shouldn't actually be confusing, because it works the same way as any other expression:
>>> 1 + 1
2
This displays at the interactive prompt, but not if we make a script that just says 1 + 1 and try running it.
Again: if you need something to display as part of your script, print it. If you need to use it in the next step of the calculation, return it.
The secret is that the interactive prompt is causing the result to be displayed, not the code. It's a separate step that the prompt does for you, so that you can see how the code works a step at a time, for testing purposes.
Now, let's see what happens with print:
>>> def example():
... return 'test'
...
>>> print(example())
test
The result will display, whether we have this in an interactive prompt or in a script. print is explicitly used to display the value - and as we can see, it displays differently. The interactive prompt uses what is called the repr of the value that was returned from example, while print uses the str of the value.
In practical terms: print shows us what the value looks like, in text form (for a string, that just means the contents of the string as-is). The interactive prompt shows us what the value is - typically, by writing something that looks like the source code we would use to create it.3
But wait - print is a function, right? (In 3.x, anyway). So it returned a value, right? Isn't the interpreter prompt supposed to display that in its separate step? What happened?
There is one more trick: print returns the special value None, which the interpreter prompt will ignore. We can test this by using some expressions that evaluate to None:
>>> None
>>> [None][0]
>>> def example():
... pass # see footnote 4
...
>>> example()
>>>
In each case, there is no separate line at all for output, not even a blank line - the interpreter prompt just goes back to the prompt.
1 It can also be used to write into files, although this is a less common idea and normally it will be clearer to use the .write method.
2 This is sometimes called the REPL, which stands for "read-eval-print loop".
3 This isn't always practical, or even possible - especially once we start defining our own classes. The firm rule is that repr will lean on the .__repr__ method of the object to do the dirty work; similarly, str leans on .__str__.
4 Functions in Python implicitly return None if they don't explicitly return a value.
Return statement -- will return some values according your function.
def example(n):
if n == 5:
return true
else:
return false
if you call above function and you pass number 5 then it will return true else it will return false.
Printing function -- it will print content that you have given to the print function or with in print function bracket.
def example(n):
if n == 5:
print("number is equal")
else:
print("number is not equal")

Palindrome problem - Trying to check 2 lists for equality python3.9

I'm writing a program to check if a given user input is a palindrome or not. if it is the program should print "Yes", if not "no". I realize that this program is entirely too complex since I actually only needed to check the whole word using the reversed() function, but I ended up making it quite complex by splitting the word into two lists and then checking the lists against each other.
Despite that, I'm not clear why the last conditional isn't returning the expected "Yes" when I pass it "racecar" as an input. When I print the lists in line 23 and 24, I get two lists that are identical, but then when I compare them in the conditional, I always get "No" meaning they are not equal to each other. can anyone explain why this is? I've tried to convert the lists to strings but no luck.
def odd_or_even(a): # function for determining if odd or even
if len(a) % 2 == 0:
return True
else:
return False
the_string = input("How about a word?\n")
x = int(len(the_string))
odd_or_even(the_string) # find out if the word has an odd or an even number of characters
if odd_or_even(the_string) == True: # if even
for i in range(x):
first_half = the_string[0:int((x/2))] #create a list with part 1
second_half = the_string[(x-(int((x/2)))):x] #create a list with part 2
else: #if odd
for i in range(x):
first_half = the_string[:(int((x-1)/2))] #create a list with part 1 without the middle index
second_half = the_string[int(int(x-1)/2)+1:] #create a list with part 2 without the middle index
print(list(reversed(second_half)))
print(list(first_half))
if first_half == reversed(second_half): ##### NOT WORKING BUT DONT KNOW WHY #####
print("Yes")
else:
print("No")
Despite your comments first_half and second_half are substrings of your input, not lists. When you print them out, you're converting them to lists, but in the comparison, you do not convert first_half or reversed(second_half). Thus you are comparing a string to an iterator (returned by reversed), which will always be false.
So a basic fix is to do the conversion for the if, just like you did when printing the lists out:
if list(first_half) == list(reversed(second_half)):
A better fix might be to compare as strings, by making one of the slices use a step of -1, so you don't need to use reversed. Try second_half = the_string[-1:x//2:-1] (or similar, you probably need to tweak either the even or odd case by one). Or you could use the "alien smiley" slice to reverse the string after you slice it out of the input: second_half = second_half[::-1].
There are a few other oddities in your code, like your for i in range(x) loop that overwrites all of its results except the last one. Just use x - 1 in the slicing code and you don't need that loop at all. You're also calling int a lot more often than you need to (if you used // instead of /, you could get rid of literally all of the int calls).

Unable to Reverse the text using 'for' Loop Function

I want to reverse the string using the Loop & Function. But when I use the following code, it is output the exact same string again. But it suppose to reverse the string. I can't figure out why.
def reversed_word(word):
x=''
for i in range(len(word)):
x+=word[i-len(word)]
print(i-len(word))
return x
a=reversed_word('APPLE')
print(a)
If you look at the output of your debug statement (the print in the function), you'll see you're using the indexes -5 through -1.
Since negative indexes specify the distance from the end of the string, -5 is the A, -4 is the first P, and so on. And, since you're appending these in turn to an originally empty string, you're just adding the letters in the same order they appear in the original.
To add them in the other order, you can simply use len(word) - i - 1 as the index, giving the sequence (len-1) .. 0 (rather than -len .. -1, which equates to 0 .. (len-1)):
def reversed_word(word):
result = ""
for i in range(len(word)):
result += word[len(word) - i - 1]
return result
Another alternative is to realise you don't need to use an index at all since iterating over a string gives it to you one character at a time. However, since it gives you those characters in order, you need to adjust how you build the reversed string, by prefixing each character rather than appending:
def reverse_string(word):
result = ""
for char in word:
result = char + result
return result
This builds up the reversed string (from APPLE) as A, PA, PPA, LPPA and ELPPA.
Of course, you could also go fully Pythonic:
def reverse_string(word):
return "".join([word[i] for i in range(len(word), -1, -1)])
This uses list comprehension to create a list of characters in the original string (in reverse order) then just joins that list into a single string (with an empty separator).
Probably not something I'd hand in for classwork (unless I wanted to annoy the marker) but you should be aware that that's how professional Pythonistas usually tackle the problem.
Let's say your word is python.
You loop will then iterate over the values 0 through 5, since len(word) == 6.
When i is 0, i-len(word) is -6 (note carefully that this value is negative). You'll note that word[-6] is the character six places to the left from the end of the string, which is p.
Similarly, when i is 1, i-len(word) is -5, and word[i-len(word)] is y.
This pattern continues for each iteration of your loop.
It looks like you intend to use positive indices to step backward through the string with each iteration. To obtain this behavior, try using the expression len(word)-i-1 to index your string.
def reversed_word(word):
reversed = ''
for i in range(len(word)-1, -1, -1):
reversed += word[i]
return reversed
print(reversed_word("apple"))

Find a repeated character in a string (python)

I managed to find this code online which showed me how to find and print a repeated character in a string. I'm confused as to how it's working though. I don't understand what the h[i] = 0 part is technically doing. Can someone please explain?
a = 'abcdeab'
h = {}
for i in a:
if i in h:
print(i)
else:
h[i] = 0
I understand how it's iterating over the string, but I don't understand how it's being added to the dictionary in order to be checked if it already exists in that dictionary or not. Setting h[i] = 0 is what's throwing me off. I don't understand why it's being set to 0.
I'm adding this after the problem was answered:
I ended up creating a different solution and thought I would post it in case anyone else was looking into the same problem. It is as follows (using a list instead of a dictionary):
a = 'abcdeab'
h = []
for i in a:
if i in h:
print(i)
else:
h.append(i)
Also, if you're looking for ONLY the first occurrence of a repeated character, you would add break after print(i). In this case, it would only print a instead of both a and b.
The variable h has been defined to be a dictionary. For each letter in your input string, if it be present in the map, it gets printed, otherwise the map gets assigned a (key, value) pair of (letter, 0). That is, an entry is made into the map with the letter as the key, and zero as the (arbitrary) value. Here is your loop with some comments:
for i in a:
if i in h: # if the key 'i' exists in the dictionary
print(i)
else:
h[i] = 0 # otherwise add an entry for this letter

Why does len(point_str) return 1?

import sys
string_input = "6\n212 132322\n212 21\n65 56\n32 3\n3232 32\n313 13\n0"
# a two dimensional array to store points
points = []
for line in string_input.split("\n"):
# split the inputed line using space to divide x and y coordinate
points_str = line.split(" ")
point_coordinate = []
if len(points_str) != 1:
for val in points_str:
point_coordinate.append(int(val))
points.append(point_coordinate)
print(str(points))
print(len(points_str))
Why does the len(points_str) return 1? I am also very confused why 1 != 1 continues to perform the rest of the code.
First your loop run through all iterations, then you print out len(points_str). Now points_str gets a new value in each iteration, but since you only print at the end, you get the length of the last value that points_str was assigned. This is the last element of string_input.split("\n"), which is '0'. The length of '0' is indeed 1.
Try moving the line
print(len(points_str))
inside of the loop (that is, just add four spaces) and check the output. You should also try to print out points_str, not just its length.
Well, because it's of length 1. At least in your first iteration.
Your first line is "6", so points_str is ["6"], which has a length of 1.
You should really use a debugger.

Resources