I am trying to Save the entire model after each epoch using ModelCheckpoint callback.
After training if i am trying to load the saved model and evaluate, the model weights are not loaded. Why is this load_model not working for loading the model weights?
import tensorflow as tf
print(tf.__version__)
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.models import load_model
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
x_train = x_train / 255.0
x_test = x_test / 255.0
# Use smaller subset -- speeds things up
x_train = x_train[:10000]
y_train = y_train[:10000]
x_test = x_test[:1000]
y_test = y_test[:1000]
def get_test_accuracy(model, x_test, y_test):
test_loss, test_acc = model.evaluate(x=x_test, y=y_test, verbose=0)
print('accuracy: {acc:0.3f}'.format(acc=test_acc))
def get_new_model():
model = Sequential([
Conv2D(filters=16, input_shape=(32, 32, 3), kernel_size=(3, 3),
activation='relu', name='conv_1'),
Conv2D(filters=8, kernel_size=(3, 3), activation='relu', name='conv_2'),
MaxPooling2D(pool_size=(4, 4), name='pool_1'),
Flatten(name='flatten'),
Dense(units=32, activation='relu', name='dense_1'),
Dense(units=10, activation='softmax', name='dense_2')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
# Create Tensorflow checkpoint object
checkpoint_path = "model_checkpoints"
checkpoint = ModelCheckpoint(filepath=checkpoint_path,
save_weights_only=False,
save_freq="epoch",
verbose=1)
# Create and fit model with checkpoint
model = get_new_model()
model.fit(x_train,
y_train,
epochs=3,
callbacks=[checkpoint])
# Get the model's test accuracy
get_test_accuracy(model,x_test,y_test)
# Reload model from scratch
model = load_model(checkpoint_path)
get_test_accuracy(model,x_test,y_test)
The accuracy after loading the saved model load_model is not same as the accuracy for trained model.
Related
When I run the following code, I am getting folders created named cp_1, cp_2 while I want to save checkpoint files with every epoch.
Then I want to use the latest saved checkpoint file to load the weights for my model instance with model.load_weights(tf.train.latest_checkpoint('model_checkpoints_5000'))
how can I do it please?
import os
import tensorflow as tf
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
# Use the CIFAR-10 dataset
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
x_train = x_train / 255.0
x_test = x_test / 255.0
# Use smaller subset -- speeds things up
x_train = x_train[:10000]
y_train = y_train[:10000]
x_test = x_test[:1000]
y_test = y_test[:1000]
# define a function that creates a new instance of a simple CNN.
def create_model():
model = Sequential([
Conv2D(filters=16, input_shape=(32, 32, 3), kernel_size=(3, 3),
activation='relu', name='conv_1'),
Conv2D(filters=8, kernel_size=(3, 3), activation='relu', name='conv_2'),
MaxPooling2D(pool_size=(4, 4), name='pool_1'),
Flatten(name='flatten'),
Dense(units=32, activation='relu', name='dense_1'),
Dense(units=10, activation='softmax', name='dense_2')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
checkpoint_5000_path = './model_checkpoints_5000/cp_{epoch:02d}'
checkpoint_5000 = ModelCheckpoint(filepath = checkpoint_5000_path,
save_weights= True,
save_freq = 'epoch',
verbose = 1)
model = create_model()
model.fit(x = x_train,
y = y_train,
epochs = 3,
validation_data = (x_test, y_test),
batch_size = 10,
callbacks = [checkpoint_5000])
My output is the following.
Epoch 00001: saving model to ./model_checkpoints_5000\cp_01
INFO:tensorflow:Assets written to: ./model_checkpoints_5000\cp_01\assets
Epoch 2/3
1000/1000 [==============================] - 3s 3ms/step - loss: 1.4493 - accuracy: 0.4744 - val_loss: 1.4664 - val_accuracy: 0.4770
I have tried adding .h5 to
'./model_checkpoints_5000/cp_{epoch:02d}.h5'.
however, then if I try
tf.train.latest_checkpoint('model_checkpoints_5000'), I get None?
while I should be getting the file name cp_03.h5?
You need to use below code after training the model:
checkpoint_dir = os.path.dirname(checkpoint_5000_path)
os.listdir(checkpoint_dir)
Output:
['cp_01',
'cp_00.h5',
'cp_03',
'cp_00.data-00000-of-00001',
'cp_00.index',
'cp_03.h5',
'cp_02',
'cp_01.h5',
'cp_02.h5',
'checkpoint']
Please check this link for more details.
I'm trying to train an autoencoder but have problems in reshaping my X_train to fit it to my model model().
from tensorflow import keras
from keras.layers import *
from keras.models import Model
from keras.models import Sequential
from keras.optimizers import Adam
from keras.optimizers import RMSprop
from keras.utils import plot_model
X_train = np.array(X_train, dtype=np.float)
X_test =np.array(X_train, dtype=np.float)
X_train = X_train.reshape(len(X_train), 100,1)
X_test = X_test.reshape(len(X_test), 100,1)
#inputs = Input(shape=(230, 1,100))
epoch = 100
batch = 128
def model():
m = Sequential()
# ##m.add(Reshape((,)))
m.add(Flatten())
m.add(Dense(512, activation='relu'))
m.add(Dense(128, activation = 'relu'))
m.add(Dense(2, activation = 'linear'))
m.add(Dense(128, activation = 'relu'))
m.add(Dense(512, activation = 'relu'))
m.add(Dense(784, activation = 'sigmoid'))
m.compile(loss='mean_squared_error', optimizer = 'rmsprop', metrics = ['accuracy'])
# Fit data to model m
m.fit(X_train, X_train, batch_size = batch, epochs = epoch)
m.summary()
#score = m.evaluate(X_test, Y_test, verbose = 0)
#print('Test loss:' score[0])
#print('Test accuracy:', score[1])
#m.summary()
mod = model()
The of dimension of my data is the following:
X_train = (523, 100,1)
X_test = (523, 100,1)
To fix your issue, change the following:
X_train = X_train.reshape((-1, 100))
X_test = X_test.reshape((-1, 100))
Delete the Flatten layer and use 100 neurons for the last layer as stated in the comments.
I have the following NN model using Keras:
import numpy as np
from keras import Sequential
from keras.layers import Dense
path = 'pima-indians-diabetes.data.csv'
dataset = np.loadtxt(path, delimiter=",")
X = dataset[:,0:8]
Y = dataset[:,8]
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)
model = Sequential()
model.add(Dense(16, input_dim=8, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=100, batch_size=16, validation_data=(X_test, y_test))
Kindly, is it possible to extract the confusion matrix? How?
You can use scikit-learn:
y_pred = model.predict(X_test)
confusion_matrix = sklearn.metrics.confusion_matrix(y_test, np.rint(y_pred))
It can be done using TensorFlow (which is almost Keras =)).
You start by making predictions on your test set with your trained model:
predictions = model.predict(x_test)
Then you can import TensorFlow and use its confusion_matrix method as follows.
import tensorflow as tf
conf_matrix = tf.math.confusion_matrix(labels=y_test,
predictions=predictions)
More information in the TensorFlow documentation.
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.datasets import mnist
import numpy
model = Sequential()
model.add(Dense(500,input_shape=(784,))) # 28*28=784
model.add(Activation('tanh')) # tanh
model.add(Dropout(0.5)) # 50% dropout
model.add(Dense(500)) # 500个
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Dense(10))
model.add(Activation('softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, class_mode='categorical')
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1] * X_train.shape[2])
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1] * X_test.shape[2])
Y_train = (numpy.arange(10) == y_train[:, None]).astype(int)
Y_test = (numpy.arange(10) == y_test[:, None]).astype(int)
model.fit(X_train,Y_train,batch_size=200,epochs=50,shuffle=True,verbose=0,validation_split=0.3)
model.evaluate(X_test, Y_test, batch_size=200, verbose=0)
print("test set")
scores = model.evaluate(X_test,Y_test,batch_size=200,verbose=0)
print("")
print("The test loss is %f" % scores)
result = model.predict(X_test,batch_size=200,verbose=0)
I found this post Error when profiling keras models, which modifies the tensorflow library.
So, I checked Keras library code from the link. But could not find anything like ['class_mode'] to modify the keras library. Next, I tried running the code after re-installing keras, but even that didn't work.
I used anaconda to import Kreas, maybe I install wrong?
Can anyone suggest a solution for this?
remove class_mode='categorical',it runs
I am newbie on keras,
I try to follow the Keras tutorial for Multilayer Perceptron (MLP) for multi-class softmax classification, using my data set.
My data has 3 classes and only one feature, but I don't understand why the result always show just 0,3 of accuracy and the model predicted all training data as first class. then the confusion matrix is like this.
Confusion matrix
Here the coding:
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
import pandas as pd
import numpy as np
# Importing the dataset
dataset = pd.read_csv('StatusAll.csv')
X = dataset.iloc[:, 1:].values
y = dataset.iloc[:, 0:1].values
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
from keras.utils import to_categorical
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(Dense(64, activation='tanh', input_dim=1))
model.add(Dropout(0.5))
model.add(Dense(64, activation='tanh'))
model.add(Dropout(0.5))
model.add(Dense(4, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
history = model.fit(x_train, y_train,
epochs=100,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)
print('Test score:', score[0])
print('Test accuracy:', score[1])
from sklearn import metrics
prediction = model.predict(x_test)
prediction = np.around(prediction)
y_test_non_category = [ np.argmax(t) for t in y_test ]
y_predict_non_category = [ np.argmax(t) for t in prediction ]
from sklearn.metrics import confusion_matrix
conf_mat = confusion_matrix(y_test_non_category, y_predict_non_category)
print (conf_mat)
I hope I can get some advice, thanksss.
The x_train example
x_train
y_train before converted to categorical
enter image description here
Your final Dense layer has 4 outputs, it seems like you are classifying 4 instead of 3.
model.add(Dense(3, activation='softmax')) # Number of classes 3
It would be helpful to see sample data from x_train and y_train to make sure the pre-processing is correct. Because you have only 1 feature, a MLP might be overkill. A decision tree would be simpler unless you want to experiment with MLPs.