I am visualizing four classes of the spectrogram. For a single class, My spectrogram code looks like this
Considering this as one image.
And the code to produce this, is
def spec(filename):
time_period = 0.5 # FFT time period (in seconds). Can comfortably process time frames from 0.05 seconds - 10 seconds
# ==============================================
fs_rate, signal_original = wavfile.read(filename)
total_time = int(np.floor(len(signal_original)/fs_rate))
sample_range = np.arange(0,total_time,time_period)
total_samples = len(sample_range)
print ("Frequency sampling", fs_rate)
print ("total time: ", total_time)
print ("sample time period: ", time_period)
print ("total samples: ", total_samples)
output_array = []
for i in sample_range:
# print ("Processing: %d / %d (%d%%)" % (i/time_period + 1, total_samples, (i/time_period + 1)*100/total_samples))
sample_start = int(i*fs_rate)
sample_end = int((i+time_period)*fs_rate)
signal = signal_original[sample_start:sample_end]
l_audio = len(signal.shape)
#print ("Channels", l_audio)
if l_audio == 2:
signal = signal.sum(axis=1) / 2
N = signal.shape[0]
#print ("Complete Samplings N", N)
secs = N / float(fs_rate)
# print ("secs", secs)
Ts = 1.0/fs_rate # sampling interval in time
#print ("Timestep between samples Ts", Ts)
t = scipy.arange(0, secs, Ts) # time vector as scipy arange field / numpy.ndarray
FFT = abs(scipy.fft(signal))
FFT_side = FFT[range(int(N/2))] # one side FFT range
freqs = scipy.fftpack.fftfreq(signal.size, t[1]-t[0])
fft_freqs = np.array(freqs)
freqs_side = freqs[range(int(N/2))] # one side frequency range
fft_freqs_side = np.array(freqs_side)
# Reduce to 0-5000 Hz
bucket_size = 5
buckets = 16
FFT_side = FFT_side[0:bucket_size*buckets]
fft_freqs_side = fft_freqs_side[0:bucket_size*buckets]
# Combine frequencies into buckets
FFT_side = np.array([int(sum(FFT_side[current: current+bucket_size])) for current in range(0, len(FFT_side), bucket_size)])
fft_freqs_side = np.array([int(sum(fft_freqs_side[current: current+bucket_size])) for current in range(0, len(fft_freqs_side), bucket_size)])
# FFT_side: Normalize (0-1)
max_value = max(FFT_side)
if (max_value != 0):
FFT_side_norm = FFT_side / max_value
# Append to output array
output_array.append(FFT_side_norm)
# ============================================
# Plotting
plt.figure(figsize=(4,7))
plt.subplot(411)
plt.subplots_adjust(hspace = 0.5)
plt.plot(t, signal, "g") # plotting the signal
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.subplot(412)
diff = np.diff(fft_freqs_side)
widths = np.hstack([diff, diff[-1]])
plt.bar(fft_freqs_side, abs(FFT_side_norm), width=widths) # plotting the positive fft spectrum
plt.xticks(fft_freqs_side, fft_freqs_side, rotation='vertical')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Count single-sided')
FFT_side_norm_line = FFT_side_norm.copy()
FFT_side_norm_line.resize( (1,buckets) )
plt.subplot(413)
plt.imshow(FFT_side_norm_line)
plt.xlabel('Image Representation 1D')
plt.show()
print("\n\n\n\n\n\n")
How can I combine four images plot like this, and make a single output image. Something like this
I'd suggest using fig.subfigures and plt.subplot_mosaic.
The plot above was obtained using this simple script:
import matplotlib.pyplot as plt
fig = plt.figure(figsize = (8, 10), layout='constrained')
# next two lines make the trick
sfigs = fig.subfigures(2,2)
mosaics = [f.subplot_mosaic('t;t;t;f;f;f;i;.') for f in sfigs.flat]
# next, "how to" reference the subplots in subfigures
mosaics[0]['t'].plot(range(5), color='b')
mosaics[1]['t'].plot(range(5), color='k')
mosaics[2]['t'].plot(range(5), color='r')
mosaics[3]['t'].plot(range(5), color='g')
mosaics[0]['f'].plot(range(3), color='b')
mosaics[1]['f'].plot(range(3), color='k')
mosaics[2]['f'].plot(range(3), color='r')
mosaics[3]['f'].plot(range(3), color='g')
mosaics[0]['i'].imshow([range(10)]*2)
plt.show()
You can do it this way:
fig, axs = plt.subplots(2, 2)
axs[0, 0].plot(x, y)
axs[0, 0].set_title('Axis [0, 0]')
axs[0, 1].plot(x, y, 'tab:orange')
axs[0, 1].set_title('Axis [0, 1]')
axs[1, 0].plot(x, -y, 'tab:green')
axs[1, 0].set_title('Axis [1, 0]')
axs[1, 1].plot(x, -y, 'tab:red')
axs[1, 1].set_title('Axis [1, 1]')
for ax in axs.flat:
ax.set(xlabel='x-label', ylabel='y-label')
# Hide x labels and tick labels for top plots and y ticks for right plots.
for ax in axs.flat:
ax.label_outer()
The result will be like this:
Taken from https://matplotlib.org/stable/gallery/subplots_axes_and_figures/subplots_demo.html
Related
I have been trying to create a polar bar chart in python for quite some time. After some research I managed to get the results that I wanted. Well, almost. There're still a couple thing that I don't know how to do.
I include my code:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import FixedLocator
from operator import add
#DATA MANIPULATION
dataset = pd.read_csv('Controls.csv', delimiter=";")
dataset.astype({'Rating':'float'})
#print(dataset.dtypes)
categories = dataset['Category'].drop_duplicates()
controls = dataset['Control'].drop_duplicates()
categ_avg = []
control_average = []
#Average for controls
for category in categories:
avg = 0
for index, item in dataset.iterrows():
if item['Category'] == category:
avg += item['Rating']
categ_avg.append(avg)
avg = 0
for control in controls:
avg = 0
for index, item in dataset.iterrows():
if item['Control'] == control:
avg += item['Rating']
control_average.append(avg)
avg = 0
average = [total / 5 for total in categ_avg]
avgdf = pd.DataFrame({
'Category' : categories,
#'Controls' : controls,
'Average' : average
})
#PLOTTING
#Compute pie slices which is the number of unique controls
N = len(controls)
#theta = np.linspace(0, 2 * np.pi, N, endpoint=False)
theta = [0]
for cat in categories:
if cat == 'CAT-A':
theta.append( theta[-1] + (2 * np.pi/N * 2) )
else:
theta.append( theta[-1] + (2*np.pi / N) )
print(theta)
#Compute the filling axis
mid_theta = []
for cat in categories:
if cat == 'CAT-A':
mid_theta.append( 2 * np.pi/N )
else:
mid_theta.append( 2 * np.pi / N / 2 )
mid_theta = list(map(add,theta, mid_theta))
print(mid_theta)
radii = avgdf['Average']
#width = theta[1] - theta[0]
width = []
for i in range(0, len(avgdf['Average'])):
width.append(theta[i+1] - theta[i])
fig = plt.figure()
fig.patch.set_facecolor('white')
fig.patch.set_alpha(0.5)
#Draw X labels
ax = fig.add_subplot(111, projection='polar')
ax.set_xticks(theta)
# Draw ylabels
ax.set_rlabel_position(0)
ax.set_yticks([1, 2, 3, 4, 5])
ax.set_yticklabels(["1", "2", "3", "4", "5"], color="black", size=8)
ax.set_ylim(0, 5)
#colors = plt.cm.hsv(theta/2/np.pi)
bars = ax.bar(mid_theta, radii, width=width, bottom=0.0)
#Labels
for bar, angle, label in zip(bars, mid_theta, avgdf["Category"]):
# Labels are rotated. Rotation must be specified in degrees :(
rotation = np.rad2deg(angle)
# Flip some labels upside down
alignment = ""
if angle >= np.pi/2 and angle < 3*np.pi/2:
alignment = "right"
rotation = rotation + 180
else:
alignment = "left"
# Finally add the labels
ax.text(
x=angle,
y=5.5,
s=label,
ha=alignment,
va='center')
#Use custom colors and opacity
for r, bar in zip(avgdf['Average'], bars):
bar.set_facecolor(plt.cm.viridis(r/5.))
bar.set_alpha(0.5)
plt.show()
When I execute it I obtain the following graph: Resulting graph
What I'm trying to achieve is:
I would like to color the ring number 4 in green.
I would like to remove the degrees from the outer ring. I only want to see my categories not the 0, 144ยบ...
I really appreciate the help.
Thanks you.
Create a list of colours with as many colours as you have polar bars.
c = ['blue', 'blue', 'blue', 'green', 'blue', 'blue']
bars = ax.bar(
x=angles,
height=heights,
width=width,
color=c,
linewidth=2,
edgecolor="white")
The below code gets the percentage of all collisions. However, I want to get the percentage within a group. E.G. Mid-Block (not related to intersection) has 2 labels, a 1(red) or a 2(green/blue). Currently, the percentages next to those bars are percentages of the whole (bar count / all collisions), but I need to display the percentage within just one y-axis label. E.G. for Mid-block (not related to intersection), bar count / all collisions within mid-block (not related to intersection). I do not know how to do this, so if someone could point me in the right direction or give me some code that I could study to understand, I'd be very grateful.
Thank you so much for your time.
plt.style.use('ggplot')
plt.figure(figsize = (20, 15))
ax = sb.countplot(y = "JUNCTIONTYPE", hue = "SEVERITYCODE", data = dfm)
plt.title('Number of Persons vs. Number of Collisions by Severity', fontsize = 30)
plt.xlabel('Number of Collisions', fontsize = 24)
plt.ylabel('Number of Persons', fontsize = 24)
plt.tick_params(labelsize=18);
plt.legend(fontsize = 18, title = "Severity", loc = 'lower right')
plt.text(5, 6, "Figure 8: Number of persons plotted against the number of collisions grouped by severity", fontsize = 16)
# labels = [item.get_text() for item in ax.get_yticklabels()]
# labels[0] = 'No'
# labels[1] = 'Yes'
# ax.set_yticklabels(labels)
for p in ax.patches:
width = p.get_width()
height = p.get_height()
x, y = p.get_xy()
ax.annotate(int(width),
((x + width), y),
xytext = (30, -25),
fontsize = 18,
color = '#000000',
textcoords = 'offset points',
ha = 'right',
va = 'center')
for p in ax.patches:
width = p.get_width()
height = p.get_height()
x, y = p.get_xy()
totals = []
for i in ax.patches:
totals.append(i.get_width())
total = sum(totals)
ax.text(width + 0.3, y + 0.38,
str(
round((width/total) * 100, 2))
+ '%',
fontsize=18)
You could pre-calculate the per-group percentage points and use the order in which seaborn / matplotlib draws the bars to reference them.
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
titanic = sns.load_dataset('titanic')
# prepare the dataset
df = (titanic
.groupby(["embark_town", "survived"])
.size()
.reset_index()
.replace({"survived": {0:"no", 1:"yes"}})
.rename(columns={0:"count"}))
# calculate survival % per town of embarkation
df["percent"] = (df
.groupby("embark_town")
.apply(lambda x: x["count"] / x["count"].sum()).values)
# sort the dataframe to match the drawing order
df.sort_values(by=["survived", "embark_town"], inplace=True)
# visualisation
plt.style.use('ggplot')
fig = sns.catplot(
x="count", y="embark_town", hue="survived",
kind="bar", data=df, height=4, aspect=2)
for i, bar in enumerate(fig.ax.patches):
height = bar.get_height()
fig.ax.annotate(
# reference the pre-calculated row in the dataframe
f"{df.iloc[i, 3] :.0%}",
xycoords="data",
xytext=(20, -15),
textcoords="offset points",
xy=(bar.get_width(), bar.get_y()),
ha='center', va='center')
# make space for annonations
plt.margins(x=0.2)
plt.show()
I'm displaying a histogram of my data, with an overlaid PDF. My plots all look something like this:
and I'm trying to scale the red curve to show 100% at the peak.
My following toy code is identical to what I'm actually using, apart from the lines in between the two %:
%
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as stats
import numpy as np
my_randoms = np.random.normal(0.5, 1, 50000)
dictOne = {"delta z":my_randoms}
df = pd.DataFrame(dictOne)
df = df[df['delta z'] > -999]
%
fig, ax = plt.subplots()
h, edges, _ = ax.hist(df['delta z'], alpha = 1, density = False, bins = 100)
param = stats.norm.fit(df['delta z'].dropna()) # Fit a normal distribution to the data
pdf_fitted = stats.norm.pdf(df['delta z'], *param)
x = np.linspace(*df['delta z'].agg([min, max]), 100) # x-values
binwidth = np.diff(edges).mean()
ax.plot(x, stats.norm.pdf(x, *param)*h.sum()*binwidth, color = 'r')
# Decorations
graph_title = 'U-B'
plt.grid(which = 'both')
plt.title(r'$\Delta z$ distribution for %s'%graph_title, fontsize = 25)
plt.xlabel(r'$\Delta z = z_{spec} - z_{photo}$', fontsize = 25)
plt.ylabel('Number', fontsize = 25)
plt.xticks(fontsize = 25)
plt.yticks(fontsize = 25)
xmin, xmax = min(df['delta z']), max(df['delta z'])
plt.xlim(xmin, xmax)
plt.annotate(
r'''$\mu_{\Delta z}$ = %.3f
$\sigma_{\Delta z}$ = %.3f'''%(param[0], param[1]),
fontsize = 25, color = 'r', xy=(0.85, 0.85), xycoords='axes fraction')
How would I define another axes object from 0 to 100 on the right-hand side and map the PDF to that?
Or is there a better way to do it?
This is kind of a follow-up to my previous question.
You can use density=True in plotting the histogram.
You use .twinx():
fig = plt.figure(figsize=(10, 8), dpi=72.0)
n_rows = 2
n_cols = 2
ax1 = fig.add_subplot(n_rows, n_cols, 1)
ax2 = fig.add_subplot(n_rows, n_cols, 2)
ax3 = ax1.twinx()
https://matplotlib.org/gallery/api/two_scales.html
I am new to Data Mining/ML. I've been trying to solve a polynomial regression problem of predicting the price from given input parameters (already normalized within range[0, 1])
I'm quite close as my output is in proportion to the correct one, but it seems a bit suppressed, my algorithm is correct, just don't know how to reach to an appropriate lambda, (regularized parameter) and how to decide to what extent I should populate features as the problem says : "The prices per square foot, are (approximately) a polynomial function of the features. This polynomial always has an order less than 4".
Is there a way we could visualize data to find optimum value for these parameters, like we find optimal alpha (step size) and number of iterations by visualizing cost function in linear regression using gradient descent.
Here is my code : http://ideone.com/6ctDFh
from numpy import *
def mapFeature(X1, X2):
degree = 2
out = ones((shape(X1)[0], 1))
for i in range(1, degree+1):
for j in range(0, i+1):
term1 = X1**(i-j)
term2 = X2 ** (j)
term = (term1 * term2).reshape( shape(term1)[0], 1 )
"""note that here 'out[i]' represents mappedfeatures of X1[i], X2[i], .......... out is made to store features of one set in out[i] horizontally """
out = hstack(( out, term ))
return out
def solve():
n, m = input().split()
m = int(m)
n = int(n)
data = zeros((m, n+1))
for i in range(0, m):
ausi = input().split()
for k in range(0, n+1):
data[i, k] = float(ausi[k])
X = data[:, 0 : n]
y = data[:, n]
theta = zeros((6, 1))
X = mapFeature(X[:, 0], X[:, 1])
ausi = computeCostVect(X, y, theta)
# print(X)
print("Results usning BFGS : ")
lamda = 2
theta, cost = findMinTheta(theta, X, y, lamda)
test = [0.05, 0.54, 0.91, 0.91, 0.31, 0.76, 0.51, 0.31]
print("prediction for 0.31 , 0.76 (using BFGS) : ")
for i in range(0, 7, 2):
print(mapFeature(array([test[i]]), array([test[i+1]])).dot( theta ))
# pyplot.plot(X[:, 1], y, 'rx', markersize = 5)
# fig = pyplot.figure()
# ax = fig.add_subplot(1,1,1)
# ax.scatter(X[:, 1],X[:, 2], s=y) # Added third variable income as size of the bubble
# pyplot.show()
The current output is:
183.43478288
349.10716957
236.94627602
208.61071682
The correct output should be:
180.38
1312.07
440.13
343.72
I need your help. Please consider the code below, which plots a sinusoid using pylab in IPython. A slider below the axis enables the user to adjust the frequency of the sinusoid interactively.
%pylab
# setup figure
fig, ax = subplots(1)
fig.subplots_adjust(left=0.25, bottom=0.25)
# add a slider
axcolor = 'lightgoldenrodyellow'
ax_freq = axes([0.3, 0.13, 0.5, 0.03], axisbg=axcolor)
s_freq = Slider(ax_freq, 'Frequency [Hz]', 0, 100, valinit=a0)
# plot
g = linspace(0, 1, 100)
f0 = 1
sig = sin(2*pi*f0*t)
myline, = ax.plot(sig)
# update plot
def update(value):
f = s_freq.val
new_data = sin(2*pi*f*t)
myline.set_ydata(new_data) # crucial line
fig.canvas.draw_idle()
s_freq.on_changed(update)
Instead of the above, I need to plot the signal as vertical lines, ranging from the amplitude of each point in t to the x-axis. Thus, my first idea was to use vlines instead of plot in line 15:
myline = ax.vlines(range(len(sig)), 0, sig)
This solution works in the non-interactive case. The problem is, plot returns an matplotlib.lines.Line2D object, which provides the set_ydata method to update data interactively. The object returned by vlines is of type matplotlib.collections.LineCollection and does not provide such a method.
My question: how do I update a LineCollection interactively?
Using #Aaron Voelker's comment of using set_segments and wrapping it up in a function:
def update_vlines(*, h, x, ymin=None, ymax=None):
seg_old = h.get_segments()
if ymin is None:
ymin = seg_old[0][0, 1]
if ymax is None:
ymax = seg_old[0][1, 1]
seg_new = [np.array([[xx, ymin],
[xx, ymax]]) for xx in x]
h.set_segments(seg_new)
Analog for hlines:
def update_hlines(*, h, y, xmin=None, xmax=None):
seg_old = h.get_segments()
if xmin is None:
xmin = seg_old[0][0, 0]
if xmax is None:
xmax = seg_old[0][1, 0]
seg_new = [np.array([[xmin, yy],
[xmax, yy]]) for yy in y]
h.set_segments(seg_new)
I will give examples for vlines here.
If you have multiple lines, #scleronomic solution works perfect. You also might prefer one-liner:
myline.set_segments([np.array([[x, x_min], [x, x_max]]) for x in xx])
If you need to update only maximums, then you can do this:
def update_maxs(vline):
vline[:,1] = x_min, x_max
return vline
myline.set_segments(list(map(update_maxs, x.get_segments())))
Also this example could be useful: LINK