I am Trying to scrape graph data from the webpage: 'https://cawp.rutgers.edu/women-percentage-2020-candidates'
I tried bellow code to extract data from Graph:
import requests
from bs4 import BeautifulSoup
Res = requests.get('https://cawp.rutgers.edu/women-percentage-2020-candidates').text
soup = BeautifulSoup(Res, "html.parser")
Values= [i.text for i in soup.findAll('g', {'class': 'igc-graph'}) if i]
Dates = [i.text for i in soup.findAll('g', {'class': 'igc-legend-entry'}) if i]
print(Values, Dates) ## both list are empty
Data= pd.DataFrame({'Value':Values,'Date':Dates}) ## Returning an Empty Dataframe
I want to extract Date and Value from all the 4 bar Graphs. Please anyone suggest what i have to do here to extract the graph data, or is there any other method that i can try to extract the data. thanks;
This graph was located on this url : https://e.infogram.com/5bb50948-04b2-4113-82e6-5e5f06236538
You can find the infogram id (path of target url) directly on the original url if you look for div with class infogram-embed which has the value of attribute data-id:
<div class="infogram-embed" data-id="5bb50948-04b2-4113-82e6-5e5f06236538" data-title="Candidate Tracker 2020_US House_Proportions" data-type="interactive"> </div>
From this url, it loads a static JSON in javascript. You can use regex to extract it and parse the JSON structure to get row/column, and the different tables:
import requests
from bs4 import BeautifulSoup
import re
import json
original_url = "https://cawp.rutgers.edu/women-percentage-2020-candidates"
r = requests.get(original_url)
soup = BeautifulSoup(r.text, "html.parser")
infogram_url = f'https://e.infogram.com/{soup.find("div",{"class":"infogram-embed"})["data-id"]}'
r = requests.get(infogram_url)
soup = BeautifulSoup(r.text, "html.parser")
script = [
t
for t in soup.findAll("script")
if "window.infographicData" in t.text
][0].text
extract = re.search(r".*window\.infographicData=(.*);$", script)
data = json.loads(extract.group(1))
entities = data["elements"]["content"]["content"]["entities"]
tables = [
(entities[key]["props"]["chartData"]["sheetnames"], entities[key]["props"]["chartData"]["data"])
for key in entities.keys()
if ("props" in entities[key]) and ("chartData" in entities[key]["props"])
]
data = []
for t in tables:
for i, sheet in enumerate(t[0]):
data.append({
"sheetName": sheet,
"table": dict([(t[1][i][0][j],t[1][i][1][j]) for j in range(len(t[1][i][0])) ])
})
print(data)
Output:
[{'sheetName': 'Sheet 1',
'table': {'': '2020', 'Districts Already Filed': '435'}},
{'sheetName': 'All',
'table': {'': 'Filed', '2016': '17.8%', '2018': '24.2%', '2020': '29.1%'}},
{'sheetName': 'Democrats Only',
'table': {'': 'Filed', '2016': '25.1%', '2018': '32.5%', '2020': '37.9%'}},
{'sheetName': 'Republicans Only',
'table': {'': 'Filed', '2016': '11.5%', '2018': '13.7%', '2020': '21.3%'}}]
Related
The code below gives me the following error:
ValueError: Length mismatch: Expected axis has 0 elements, new values have 1 elements
on the df.columns = ["GP Practice Name"] line.
I tried
import pandas as pd
import requests
from bs4 import BeautifulSoup
postal_codes = ["2000", "2010", "2020", "2030", "2040"]
places_by_postal_code = {}
def get_places(postal_code):
url = f"https://www.yellowpages.com.au/search/listings?clue={postal_code}&locationClue=&latitude=&longitude=&selectedViewMode=list&refinements=category:General%20Practitioner&selectedSortType=distance"
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
places = soup.find_all("div", {"class": "listing-content"})
return [place.find("h2").text for place in places]
for postal_code in postal_codes:
places = get_places(postal_code)
places_by_postal_code[postal_code] = places
df = pd.DataFrame.from_dict(places_by_postal_code, orient='index')
df.columns = ["GP Practice Name"]
df = pd.DataFrame(places_by_postal_code.values(), index=places_by_postal_code.keys(), columns=["GP Practice Name"])
print(df)
and was expecting a list of GPs for the postcodes specified in the postal_codes variable.
Based on the answered code from this link, I'm able to create a new column: df['url'] = 'https://www.cspea.com.cn/list/c01/' + df['projectCode'].
Next step I would like to pass the url column's values to the following code and append all the scrapied contents as dataframe.
import urllib3
import requests
from bs4 import BeautifulSoup
import pandas as pd
url = "https://www.cspea.com.cn/list/c01/gr2021bj1000186" # url column's values should be passed here one by one
soup = BeautifulSoup(requests.get(url, verify=False).content, "html.parser")
index, data = [], []
for th in soup.select(".project-detail-left th"):
h = th.get_text(strip=True)
t = th.find_next("td").get_text(strip=True)
index.append(h)
data.append(t)
df = pd.DataFrame(data, index=index, columns=["value"])
print(df)
How could I do that in Python? Thanks.
Updated:
import requests
from bs4 import BeautifulSoup
import pandas as pd
df = pd.read_excel('items_scraped.xlsx')
data = []
urls = df.url.tolist()
for url_link in urls:
url = url_link
# url = "https://www.cspea.com.cn/list/c01/gr2021bj1000186"
soup = BeautifulSoup(requests.get(url, verify=False).content, "html.parser")
index, data = [], []
for th in soup.select(".project-detail-left th"):
h = th.get_text(strip=True)
t = th.find_next("td").get_text(strip=True)
index.append(h)
data.append(t)
df = pd.DataFrame(data, index=index, columns=["value"])
df = df.T
df.reset_index(drop=True, inplace=True)
print(df)
df.to_excel('result.xlsx', index = False)
But it only saved one rows into excel file.
You need to combine the dfs generated in the loop. You could add them to a list and then call pd.concat on that list.
import requests
from bs4 import BeautifulSoup
import pandas as pd
df = pd.read_excel('items_scraped.xlsx')
# data = []
urls = df.url.tolist()
dfs = []
for url_link in urls:
url = url_link
# url = "https://www.cspea.com.cn/list/c01/gr2021bj1000186"
soup = BeautifulSoup(requests.get(url, verify=False).content, "html.parser")
index, data = [], []
for th in soup.select(".project-detail-left th"):
h = th.get_text(strip=True)
t = th.find_next("td").get_text(strip=True)
index.append(h)
data.append(t)
df = pd.DataFrame(data, index=index, columns=["value"])
df = df.T
df.reset_index(drop=True, inplace=True)
print(df)
dfs.append(df)
df = pd.concat(dfs)
df.to_excel('result.xlsx', index = False)
Use
urls = df.url.tolist()
To create a list of URLs and then iterate through them using f string to insert each one into your base url
Say I need to crawler the detailed contents from this link:
The objective is to extract contents the elements from the link, and append all the entries as dataframe.
from bs4 import BeautifulSoup
import requests
import os
from urllib.parse import urlparse
url = 'http://www.jscq.com.cn/dsf/zc/cjgg/202101/t20210126_30144.html'
r = requests.get(url)
soup = BeautifulSoup(r.content, "html.parser")
text = soup.find_all(text=True)
output = ''
blacklist = [
'[document]',
'noscript',
'header',
'html',
'meta',
'head',
'input',
'script'
]
for t in text:
if t.parent.name not in blacklist:
output += '{} '.format(t)
print(output)
Out:
南京市玄武区锁金村10-30号房屋公开招租成交公告-成交公告-江苏产权市场
body{font-size:100%!important;}
.main_body{position:relative;width:1000px;margin:0 auto;background-color:#fff;}
.main_content_p img{max-width:90%;display:block;margin:0 auto;}
.m_con_r_h{padding-left: 20px;width: 958px;height: 54px;line-height: 55px;font-size: 12px;color: #979797;}
.m_con_r_h a{color: #979797;}
.main_content_p{min-height:200px;width:90%;margin:0 auto;line-height: 30px;text-indent:0;}
.main_content_p table{margin:0 auto!important;width:900px!important;}
.main_content_h1{border:none;width:93%;margin:0 auto;}
.tit_h{font-size:22px;font-family:'微软雅黑';color:#000;line-height:30px;margin-bottom:10px;padding-bottom:20px;text-align:center;}
.doc_time{font-size:12px;color:#555050;height:28px;line-height:28px;text-align:center;background:#F2F7FD;border-top:1px solid #dadada;}
.doc_time span{padding:0 5px;}
.up_dw{width:100%;border-top:1px solid #ccc;padding-top:10px;padding-bottom:10px;margin-top:30px;clear:both;}
.pager{width:50%;float:left;padding-left:0;text-align:center;}
.bshare-custom{position:absolute;top:20px;right:40px;}
.pager{width:90%;padding-left: 50px;float:inherit;text-align: inherit;}
页头部分开始
页头部分结束
START body
南京市玄武区锁金村10-30号房屋公开招租成交公告
组织机构:江苏省产权交易所
发布时间:2021-01-26
项目编号
17FCZZ20200125
转让/出租标的名称
南京市玄武区锁金村10-30号房屋公开招租
转让方/出租方名称
南京邮电大学资产经营有限责任公司
转让标的评估价/年租金评估价(元)
64800.00
转让底价/年租金底价(元)
97200.00
受让方/承租方名称
马尕西木
成交价/成交年租金(元)
97200.00
成交日期
2021年01月15日
附件:
END body
页头部分开始
页头部分结束
But how could I loop all the pages and extract contents, and append them to the following dataframe? Thanks.
Updates for appending dfs as a dataframe:
updated_df = pd.DataFrame()
with requests.Session() as connection_session: # reuse your connection!
for follow_url in get_follow_urls(get_main_urls(), connection_session):
key = follow_url.rsplit("/")[-1].replace(".html", "")
# print(f"Fetching data for {key}...")
dfs = pd.read_html(
connection_session.get(follow_url).content.decode("utf-8"),
flavor="bs4",
)
# https://stackoverflow.com/questions/39710903/pd-read-html-imports-a-list-rather-than-a-dataframe
for df in dfs:
df = dfs[0].T.iloc[1:, :].copy()
updated_df = updated_df.append(df)
print(updated_df)
cols = ['项目编号', '转让/出租标的名称', '转让方/出租方名称', '转让标的评估价/年租金评估价(元)',
'转让底价/年租金底价(元)', '受让方/承租方名称', '成交价/成交年租金(元)', '成交日期']
updated_df.columns = cols
updated_df.to_excel('./data.xlsx', index = False)
Here's how I would do this:
build all main urls
visit every main page
get the follow urls
visit each follow url
grab the table from the follow url
parse the table with pandas
add the table to a dictionary of pandas dataframes
process the tables (not included -> implement your logic)
repeat the 2 - 7 steps to continue scraping the data.
The code:
import pandas as pd
import requests
from bs4 import BeautifulSoup
BASE_URL = "http://www.jscq.com.cn/dsf/zc/cjgg"
def get_main_urls() -> list:
start_url = f"{BASE_URL}/index.html"
return [start_url] + [f"{BASE_URL}/index_{i}.html" for i in range(1, 6)]
def get_follow_urls(urls: list, session: requests.Session()) -> iter:
for url in urls[:1]: # remove [:1] to scrape all the pages
body = session.get(url).content
s = BeautifulSoup(body, "lxml").find_all("td", {"width": "60%"})
yield from [f"{BASE_URL}{a.find('a')['href'][1:]}" for a in s]
dataframe_collection = {}
with requests.Session() as connection_session: # reuse your connection!
for follow_url in get_follow_urls(get_main_urls(), connection_session):
key = follow_url.rsplit("/")[-1].replace(".html", "")
print(f"Fetching data for {key}...")
df = pd.read_html(
connection_session.get(follow_url).content.decode("utf-8"),
flavor="bs4",
)
dataframe_collection[key] = df
# process the dataframe_collection here
# print the dictionary of dataframes (optional and can be removed)
for key in dataframe_collection.keys():
print("\n" + "=" * 40)
print(key)
print("-" * 40)
print(dataframe_collection[key])
Output:
Fetching data for t20210311_30347...
Fetching data for t20210311_30346...
Fetching data for t20210305_30338...
Fetching data for t20210305_30337...
Fetching data for t20210303_30323...
Fetching data for t20210225_30306...
Fetching data for t20210225_30305...
Fetching data for t20210225_30304...
Fetching data for t20210225_30303...
Fetching data for t20210209_30231...
and then ...
I'm trying to scrape a website and get the output in an Excel file. I manage to create the Excel file but the columns are all messed up (please see the pictures).
How should I go about transferring the data correctly from the CSV file to the Excel file?
The code I used:
import requests
import pandas as pd
from bs4 import BeautifulSoup
page = requests.get('https://forecast.weather.gov/MapClick.php?lat=34.05349000000007&lon=-118.24531999999999#.XsTs9RMzZTZ')
soup = BeautifulSoup(page.content, 'html.parser')
week = soup.find(id = 'seven-day-forecast-body')
items = week.find_all(class_='tombstone-container')
period_names = [item.find(class_='period-name').get_text() for item in items]
short_descriptions = [item.find(class_='short-desc').get_text() for item in items]
temperatures = [item.find(class_='temp').get_text() for item in items]
weather_stuff = pd.DataFrame(
{
'period' : period_names,
'short_descriptions' : short_descriptions,
'temperatures' : temperatures,
})
print(weather_stuff)
weather_stuff.to_csv('weather.csv')
A minimilistic working example:
df1 = pd.DataFrame([['a', 'b'], ['c', 'd']],
index=['row 1', 'row 2'],
columns=['col 1', 'col 2'])
df1.to_excel("output.xlsx")
# To specify the sheet name:
df1.to_excel("output.xlsx", sheet_name='Sheet_name_1')
Source: Documentation
I'm working on web scraping with beautiful soup to retrieve jobs from indeed. My code is working but when it loops to the next page it would overwrite the existing CSV file. I see from other posts that I would need to use pandas concat? but I can't seem to get it to work or where to implement it in my source code. Any suggestions to improve my code would also be greatly appreciated.
Below scrape pages 1-2 on indeed.
from bs4 import BeautifulSoup
import requests, pandas as pd
from urllib.parse import urljoin
print('Getting new jobs...')
main_url = 'https://www.indeed.com/jobs?q=web+developer&l=Sacramento,+CA&sort=date'
start_from = '&start='
for page in range(1, 3):
page = (page - 1) * 10
url = "%s%s%d" % (main_url, start_from, page) # get full url
indeed = requests.get(url)
indeed.raise_for_status()
soup = BeautifulSoup(indeed.text, 'html.parser')
home = 'https://www.indeed.com/viewjob?'
jobsTitle, companiesName, citiesName, jobsSummary, jobsLink = [], [], [], [], []
target = soup.find_all('div', class_=' row result')
for div in target:
if div:
title = div.find('a', class_='turnstileLink').text.strip()
jobsTitle.append(title)
company = div.find('span', class_='company').text.strip()
companiesName.append(company)
city = div.find('span', class_='location').text.strip()
citiesName.append(city)
summary = div.find('span', class_='summary').text.strip()
jobsSummary.append(summary)
job_link = urljoin(home, div.find('a').get('href'))
jobsLink.append(job_link)
target2 = soup.find_all('div', class_='lastRow row result')
for i in target2:
title2 = i.find('a', class_='turnstileLink').text.strip()
jobsTitle.append(title2)
company2 = i.find('span', class_='company').text.strip()
companiesName.append(company2)
city2 = i.find('span', class_='location').text.strip()
citiesName.append(city2)
summary2 = i.find('span', class_='summary').text.strip()
jobsSummary.append(summary2)
jobLink2 = urljoin(home, i.find('a').get('href'))
jobsLink.append(jobLink2)
data_record = []
for title, company, city, summary, link in zip(jobsTitle, companiesName, citiesName, jobsSummary, jobsLink):
data_record.append({'Job Title': title, 'Company': company, 'City': city, 'Summary': summary, 'Job Link': link})
df = pd.DataFrame(data_record, columns=['Job Title', 'Company', 'City', 'Summary', 'Job Link'])
df
You can crate list data_record out of loop with DataFrame contructor:
data_record = []
for page in range(1, 3):
page = (page - 1) * 10
url = "%s%s%d" % (main_url, start_from, page) # get full url
indeed = requests.get(url)
indeed.raise_for_status()
soup = BeautifulSoup(indeed.text, 'html.parser')
...
for title, company, city, summary, link in zip(jobsTitle, companiesName, citiesName, jobsSummary, jobsLink):
data_record.append({'Job Title': title, 'Company': company, 'City': city, 'Summary': summary, 'Job Link': link})
df = pd.DataFrame(data_record, columns=['Job Title', 'Company', 'City', 'Summary', 'Job Link'])
Possible solution with concat:
dfs = []
for page in range(1, 3):
page = (page - 1) * 10
url = "%s%s%d" % (main_url, start_from, page) # get full url
indeed = requests.get(url)
indeed.raise_for_status()
soup = BeautifulSoup(indeed.text, 'html.parser')
...
data_record = []
for title, company, city, summary, link in zip(jobsTitle, companiesName, citiesName, jobsSummary, jobsLink):
data_record.append({'Job Title': title, 'Company': company, 'City': city, 'Summary': summary, 'Job Link': link})
df = pd.DataFrame(data_record, columns=['Job Title', 'Company', 'City', 'Summary', 'Job Link'])
dfs.append(df)
df_fin = pd.concat(dfs, ignore_index=True)