Multiprocessing & multithreading - multithreading

In spite of learning python for 3 months I still can not understand: Where do we practically use multithreading and multiprocessing in python? It'd be better if I can get the asynchrony purpose too...
Also, do I critically need it to be hired on Junior Backend Python Developer (Django) profession?

well i would say that multi threading has the same usage in most programming languages and it would be parallel processing as you might not want to queue all your processes on one thread at least if they dont need to be done in certain order for example in a video game rendering and physics and user input could be done in multiple threads as the physics dont need to wait for user input and they dont need to wait for the frame to render thus using multiple threads speeds things up now i haven't done that much back end programming but i would assume that you could use these things like a game server and a anti-cheat as the anti-cheat can just read user data like movement speed and the main logic loop in the server doesnt have to sacrifice time to process it because the anti-cheat thread can do it for and the asynchronous isnt really a benefit in all cases but it allows two threads to work in different speeds and for tasks that dont need to communicate like the rendering and the physics its a good deal that the physics can be looped separate from the rendering
hopefully this helped ik its messy but after someone better post something i can delete this

Related

What is the difference between multi-threading and asynchronous in NodeJS

NodeJs add multi-threading feature in latest update.
I would like to understand with simple examples what is the difference between multi threading and asynchronous ? In which cases we should use multi-threading than asynchronous ?
First thing to understand is that different parts of the computer works at different speeds.
Disk, Network etc...
So if you notice asynchronous code seems to only deal with network, or files for a good amount of stuff, let's call that io.
Ok, cool.
Now let's think that through, your code is running and you need to read a file. In cpu time. This is "1000s of years" so the cpu says. Hey when the data is available you let me know. Imma go do some other sh*t.
Then the disk comes back and is like hey I got that data you wanted. Cpu like? Data oh that thing I was "await"ing on.
You can see how this can be more efficient.
Now what if you aren't getting data. What if your cpu needs to do more than one thing.
Follow this, in the morning you might make a sandwich while pouring some juice. It's hard to do both right?
But you can easily pour juice while awaiting your eggs to cook.
Threads...
Threads are to get more hands. I need to do more tasks such as shrink the size of an image, I can't wait for the image to shrink. I need to actively shrink the image, but I need to respond to other people, I need to shrink multiple images, I can't do it only one at a time.
So now you get the concept let me actually explain the damn thing.
Asynchronous code creates a dumb thread that just waits for io, like disk or network. It's still a thread but the code handles it for you pretty nicely. It solves a bunch of complex work for you. You just write await and async.
Threads normally you have to manage alot more of it.
Think about it this way.
Read from disk, read from network.. they are fairly obvious things and you could make sure you create an API around that.
But cpu work, there are infinite things a cpu can be made to do. Threads normally involves more manual work.
Lastly a thread can only do one thing. Pour your orange juice and butter your sandwich with one hand.
Hard right? Might need threads, extra hand.
Now cook your eggs and cut some watermelon with one hand.
You can see how you can await for some stuff to finish and go do other things.
Go.. you a man now!!
Asynchronous is a single JavaScript thread reacting to events, through callbacks, Promise, or async await. Since the js stays in memory, it can swiftly responds to requests.
Multi-Thread is many JavaScript threads running in parallel, typically through Web Workers. You can do lots of data processing, using all CPU cores.
So, they solve different problems. If your script do enough data processing to cap out a core, multi-thread can get more job done in less time. But only you can determine whether your process can be made multi-thread and whether the extra complexity is worth it.
Traditional web servers and databases both use a single asynchronous thread to "receive" requests, and immediately hands each request off to a worker thread, which parses the request, loads the appropriate script/program/data, and runs it non-asynchronously (but in parallel to other requests). The same role split can also be seen in load balancer vs servers.
Note that browser js can multi-thread too, and is strongly advised for any sort of non-trivial client-side processing. Mathematics simulation, text processing, image rendering, document generation, even AI work. You don't need to do everything on server.

How to articulate the difference between asynchronous and parallel programming?

Many platforms promote asynchrony and parallelism as means for improving responsiveness. I understand the difference generally, but often find it difficult to articulate in my own mind, as well as for others.
I am a workaday programmer and use async & callbacks fairly often. Parallelism feels exotic.
But I feel like they are easily conflated, especially at the language design level. Would love a clear description of how they relate (or don't), and the classes of programs where each is best applied.
When you run something asynchronously it means it is non-blocking, you execute it without waiting for it to complete and carry on with other things. Parallelism means to run multiple things at the same time, in parallel. Parallelism works well when you can separate tasks into independent pieces of work.
Take for example rendering frames of a 3D animation. To render the animation takes a long time so if you were to launch that render from within your animation editing software you would make sure it was running asynchronously so it didn't lock up your UI and you could continue doing other things. Now, each frame of that animation can also be considered as an individual task. If we have multiple CPUs/Cores or multiple machines available, we can render multiple frames in parallel to speed up the overall workload.
I believe the main distinction is between concurrency and parallelism.
Async and Callbacks are generally a way (tool or mechanism) to express concurrency i.e. a set of entities possibly talking to each other and sharing resources.
In the case of async or callback communication is implicit while sharing of resources is optional (consider RMI where results are computed in a remote machine).
As correctly noted this is usually done with responsiveness in mind; to not wait for long latency events.
Parallel programming has usually throughput as the main objective while latency, i.e. the completion time for a single element, might be worse than a equivalent sequential program.
To better understand the distinction between concurrency and parallelism I am going to quote from Probabilistic models for concurrency of Daniele Varacca which is a good set of notes for theory of concurrency:
A model of computation is a model for concurrency when it is able to represent systems as composed of independent autonomous components, possibly communicating with each other. The notion of concurrency should not be confused with the notion of parallelism. Parallel computations usually involve a central control which distributes the work among several processors. In concurrency we stress the independence of the components, and the fact that they communicate with each other. Parallelism is like ancient Egypt, where the Pharaoh decides and the slaves work. Concurrency is like modern Italy, where everybody does what they want, and all use mobile phones.
In conclusion, parallel programming is somewhat a special case of concurrency where separate entities collaborate to obtain high performance and throughput (generally).
Async and Callbacks are just a mechanism that allows the programmer to express concurrency.
Consider that well-known parallel programming design patterns such as master/worker or map/reduce are implemented by frameworks that use such lower level mechanisms (async) to implement more complex centralized interactions.
This article explains it very well: http://urda.cc/blog/2010/10/04/asynchronous-versus-parallel-programming
It has this about asynchronous programming:
Asynchronous calls are used to prevent “blocking” within an application. [Such a] call will spin-off in an already existing thread (such as an I/O thread) and do its task when it can.
this about parallel programming:
In parallel programming you still break up work or tasks, but the key differences is that you spin up new threads for each chunk of work
and this in summary:
asynchronous calls will use threads already in use by the system and parallel programming requires the developer to break the work up, spinup, and teardown threads needed.
async: Do this by yourself somewhere else and notify me when you complete(callback). By the time i can continue to do my thing.
parallel: Hire as many guys(threads) as you wish and split the job to them to complete quicker and let me know(callback) when you complete. By the time i might continue to do my other stuff.
the main difference is parallelism mostly depends on hardware.
My basic understanding is:
Asynchonous programming solves the problem of waiting around for an expensive operation to complete before you can do anything else. If you can get other stuff done while you're waiting for the operation to complete then that's a good thing. Example: keeping a UI running while you go and retrieve more data from a web service.
Parallel programming is related but is more concerned with breaking a large task into smaller chunks that can be computed at the same time. The results of the smaller chunks can then be combined to produce the overall result. Example: ray-tracing where the colour of individual pixels is essentially independent.
It's probably more complicated than that, but I think that's the basic distinction.
I tend to think of the difference in these terms:
Asynchronous: Go away and do this task, when you're finished come back and tell me and bring the results. I'll be getting on with other things in the mean time.
Parallel: I want you to do this task. If it makes it easier, get some folks in to help. This is urgent though, so I'll wait here until you come back with the results. I can do nothing else until you come back.
Of course an asynchronous task might make use of parallelism, but the differentiation - to my mind at least - is whether you get on with other things while the operation is being carried out or if you stop everything completely until the results are in.
It is a question of order of execution.
If A is asynchronous with B, then I cannot predict beforehand when subparts of A will happen with respect to subparts of B.
If A is parallel with B, then things in A are happening at the same time as things in B. However, an order of execution may still be defined.
Perhaps the difficulty is that the word asynchronous is equivocal.
I execute an asynchronous task when I tell my butler to run to the store for more wine and cheese, and then forget about him and work on my novel until he knocks on the study door again. Parallelism is happening here, but the butler and I are engaged in fundamentally different tasks and of different social classes, so we don't apply that label here.
My team of maids is working in parallel when each of them is washing a different window.
My race car support team is asynchronously parallel in that each team works on a different tire and they don't need to communicate with each other or manage shared resources while they do their job.
My football (aka soccer) team does parallel work as each player independently processes information about the field and moves about on it, but they are not fully asynchronous because they must communicate and respond to the communication of others.
My marching band is also parallel as each player reads music and controls their instrument, but they are highly synchronous: they play and march in time to each other.
A cammed gatling gun could be considered parallel, but everything is 100% synchronous, so it is as though one process is moving forward.
Why Asynchronous ?
With today's application's growing more and more connected and also potentially
long running tasks or blocking operations such as Network I/O or Database Operations.So it's very important to hide the latency of these operations by starting them in background and returning back to the user interface quickly as possible. Here Asynchronous come in to the picture, Responsiveness.
Why parallel programming?
With today's data sets growing larger and computations growing more complex. So it's very important to reduce the execution time of these CPU-bound operations, in this case, by dividing the workload into chunks and then executing those chunks simultaneously. We can call this as "Parallel" .
Obviously it will give high Performance to our application.
Asynchronous
Let's say you are the point of contact for your client and you need to be responsive i.e. you need to share status, complexity of operation, resources required etc whenever asked. Now you have a time-consuming operation to be done and hence cannot take this up as you need to be responsive to the client 24/7. Hence, you delegate the time-consuming operation to someone else so that you can be responsive. This is asynchronous.
Parallel programming
Let's say you have a task to read, say, 100 lines from a text file, and reading one line takes 1 second. Hence, you'll require 100 seconds to read the text file. Now you're worried that the client must wait for 100 seconds for the operation to finish. Hence you create 9 more clones and make each of them read 10 lines from the text file. Now the time taken is only 10 seconds to read 100 lines. Hence you have better performance.
To sum up, asynchronous coding is done to achieve responsiveness and parallel programming is done for performance.
Asynchronous: Running a method or task in background, without blocking. May not necessorily run on a separate thread. Uses Context Switching / time scheduling.
Parallel Tasks: Each task runs parallally. Does not use context switching / time scheduling.
I came here fairly comfortable with the two concepts, but with something not clear to me about them.
After reading through some of the answers, I think I have a correct and helpful metaphor to describe the difference.
If you think of your individual lines of code as separate but ordered playing cards (stop me if I am explaining how old-school punch cards work), then for each separate procedure written, you will have a unique stack of cards (don't copy & paste!) and the difference between what normally goes on when run code normally and asynchronously depends on whether you care or not.
When you run the code, you hand the OS a set of single operations (that your compiler or interpreter broke your "higher" level code into) to be passed to the processor. With one processor, only one line of code can be executed at any one time. So, in order to accomplish the illusion of running multiple processes at the same time, the OS uses a technique in which it sends the processor only a few lines from a given process at a time, switching between all the processes according to how it sees fit. The result is multiple processes showing progress to the end user at what seems to be the same time.
For our metaphor, the relationship is that the OS always shuffles the cards before sending them to the processor. If your stack of cards doesn't depend on another stack, you don't notice that your stack stopped getting selected from while another stack became active. So if you don't care, it doesn't matter.
However, if you do care (e.g., there are multiple processes - or stacks of cards - that do depend on each other), then the OS's shuffling will screw up your results.
Writing asynchronous code requires handling the dependencies between the order of execution regardless of what that ordering ends up being. This is why constructs like "call-backs" are used. They say to the processor, "the next thing to do is tell the other stack what we did". By using such tools, you can be assured that the other stack gets notified before it allows the OS to run any more of its instructions. ("If called_back == false: send(no_operation)" - not sure if this is actually how it is implemented, but logically, I think it is consistent.)
For parallel processes, the difference is that you have two stacks that don't care about each other and two workers to process them. At the end of the day, you may need to combine the results from the two stacks, which would then be a matter of synchronicity but, for execution, you don't care again.
Not sure if this helps but, I always find multiple explanations helpful. Also, note that asynchronous execution is not constrained to an individual computer and its processors. Generally speaking, it deals with time, or (even more generally speaking) an order of events. So if you send dependent stack A to network node X and its coupled stack B to Y, the correct asynchronous code should be able to account for the situation as if it was running locally on your laptop.
Generally, there are only two ways you can do more than one thing each time. One is asynchronous, the other is parallel.
From the high level, like the popular server NGINX and famous Python library Tornado, they both fully utilize asynchronous paradigm which is Single thread server could simultaneously serve thousands of clients (some IOloop and callback). Using ECF(exception control follow) which could implement the asynchronous programming paradigm. so asynchronous sometimes doesn't really do thing simultaneous, but some io bound work, asynchronous could really promotes the performance.
The parallel paradigm always refers multi-threading, and multiprocessing. This can fully utilize multi-core processors, do things really simultaneously.
Summary of all above answers
parallel computing:
▪ solves throughput issue.
Concerned with breaking a large task into smaller chunks
▪ is machine related (multi machine/core/cpu/processor needed), eg: master slave, map reduce.
Parallel computations usually involve a central control which distributes the work among several processors
asynchronous:
▪ solves latency issue
ie, the problem of 'waiting around' for an expensive operation to complete before you can do anything else
▪ is thread related (multi thread needed)
Threading (using Thread, Runnable, Executor) is one fundamental way to perform asynchronous operations in Java

Multithreading Query

When did the concept of multi-threading come into the picture (as in time frame)? The basis of any multi threading app for performance improvement is the number of cores/processors and the idea of having multiple cores/processors is relatively new thanks to intel/amd, so how was multi-threading implemented in ancient times?
Take a look at the wikipedia's article on Concurrent Programming, especially the parts dedicated to single processor machines.
A quick search found this History of Multithreading: http://www.cs.clemson.edu/~mark/multithreading.html
It seems it is not a new idea by any means, going as far back as the 1950s
Multithreading is not just about using more cores to get more work done.
You might use multiple threads in a GUI program, where you need to stay responsive to the user, but you want to get other, background, work done.
You might find that your program waits for disk or network I/O. In this case, the CPU is idle, so you might as well use another thread to do some other work while you're waiting.

What kinds of applications need to be multi-threaded?

What are some concrete examples of applications that need to be multi-threaded, or don't need to be, but are much better that way?
Answers would be best if in the form of one application per post that way the most applicable will float to the top.
There is no hard and fast answer, but most of the time you will not see any advantage for systems where the workflow/calculation is sequential. If however the problem can be broken down into tasks that can be run in parallel (or the problem itself is massively parallel [as some mathematics or analytical problems are]), you can see large improvements.
If your target hardware is single processor/core, you're unlikely to see any improvement with multi-threaded solutions (as there is only one thread at a time run anyway!)
Writing multi-threaded code is often harder as you may have to invest time in creating thread management logic.
Some examples
Image processing can often be done in parallel (e.g. split the image into 4 and do the work in 1/4 of the time) but it depends upon the algorithm being run to see if that makes sense.
Rendering of animation (from 3DMax,etc.) is massively parallel as each frame can be rendered independently to others -- meaning that 10's or 100's of computers can be chained together to help out.
GUI programming often helps to have at least two threads when doing something slow, e.g. processing large number of files - this allows the interface to remain responsive whilst the worker does the hard work (in C# the BackgroundWorker is an example of this)
GUI's are an interesting area as the "responsiveness" of the interface can be maintained without multi-threading if the worker algorithm keeps the main GUI "alive" by giving it time, in Windows API terms (before .NET, etc) this could be achieved by a primitive loop and no need for threading:
MSG msg;
while(GetMessage(&msg, hwnd, 0, 0))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
// do some stuff here and then release, the loop will come back
// almost immediately (unless the user has quit)
}
Servers are typically multi-threaded (web servers, radius servers, email servers, any server): you usually want to be able to handle multiple requests simultaneously. If you do not want to wait for a request to end before you start to handle a new request, then you mainly have two options:
Run a process with multiple threads
Run multiple processes
Launching a process is usually more resource-intensive than lauching a thread (or picking one in a thread-pool), so servers are usually multi-threaded. Moreover, threads can communicate directly since they share the same memory space.
The problem with multiple threads is that they are usually harder to code right than multiple processes.
There are really three classes of reasons that multithreading would be applied:
Execution Concurrency to improve compute performance: If you have a problem that can be broken down into pieces and you also have more than one execution unit (processor core) available then dispatching the pieces into separate threads is the path to being able to simultaneously use two or more cores at once.
Concurrency of CPU and IO Operations: This is similar in thinking to the first one but in this case the objective is to keep the CPU busy AND also IO operations (ie: disk I/O) moving in parallel rather than alternating between them.
Program Design and Responsiveness: Many types of programs can take advantage of threading as a program design benefit to make the program more responsive to the user. For example the program can be interacting via the GUI and also doing something in the background.
Concrete Examples:
Microsoft Word: Edit document while the background grammar and spell checker works to add all the green and red squiggle underlines.
Microsoft Excel: Automatic background recalculations after cell edits
Web Browser: Dispatch multiple threads to load each of the several HTML references in parallel during a single page load. Speeds page loads and maximizes TCP/IP data throughput.
These days, the answer should be Any application that can be.
The speed of execution for a single thread pretty much peaked years ago - processors have been getting faster by adding cores, not by increasing clock speeds. There have been some architectural improvements that make better use of the available clock cycles, but really, the future is taking advantage of threading.
There is a ton of research going on into finding ways of parallelizing activities that we traditionally wouldn't think of parallelizing. Even something as simple as finding a substring within a string can be parallelized.
Basically there are two reasons to multi-thread:
To be able to do processing tasks in parallel. This only applies if you have multiple cores/processors, otherwise on a single core/processor computer you will slow the task down compared to the version without threads.
I/O whether that be networked I/O or file I/O. Normally if you call a blocking I/O call, the process has to wait for the call to complete. Since the processor/memory are several orders of magnitude quicker than a disk drive (and a network is even slower) it means the processor will be waiting a long time. The computer will be working on other things but your application will not be making any progress. However if you have multiple threads, the computer will schedule your application and the other threads can execute. One common use is a GUI application. Then while the application is doing I/O the GUI thread can keep refreshing the screen without looking like the app is frozen or not responding. Even on a single processor putting I/O in a different thread will tend to speed up the application.
The single threaded alternative to 2 is to use asynchronous calls where they return immediately and you keep controlling your program. Then you have to see when the I/O completes and manage using it. It is often simpler just to use a thread to do the I/O using the synchronous calls as they tend to be easier.
The reason to use threads instead of separate processes is because threads should be able to share data easier than multiple processes. And sometimes switching between threads is less expensive than switching between processes.
As another note, for #1 Python threads won't work because in Python only one python instruction can be executed at a time (known as the GIL or Global Interpreter Lock). I use that as an example but you need to check around your language. In python if you want to do parallel calculations, you need to do separate processes.
Many GUI frameworks are multi-threaded. This allows you to have a more responsive interface. For example, you can click on a "Cancel" button at any time while a long calculation is running.
Note that there are other solutions for this (for example the program can pause the calculation every half-a-second to check whether you clicked on the Cancel button or not), but they do not offer the same level of responsiveness (the GUI might seem to freeze for a few seconds while a file is being read or a calculation being done).
All the answers so far are focusing on the fact that multi-threading or multi-processing are necessary to make the best use of modern hardware.
There is however also the fact that multithreading can make life much easier for the programmer. At work I program software to control manufacturing and testing equipment, where a single machine often consists of several positions that work in parallel. Using multiple threads for that kind of software is a natural fit, as the parallel threads model the physical reality quite well. The threads do mostly not need to exchange any data, so the need to synchronize threads is rare, and many of the reasons for multithreading being difficult do therefore not apply.
Edit:
This is not really about a performance improvement, as the (maybe 5, maybe 10) threads are all mostly sleeping. It is however a huge improvement for the program structure when the various parallel processes can be coded as sequences of actions that do not know of each other. I have very bad memories from the times of 16 bit Windows, when I would create a state machine for each machine position, make sure that nothing would take longer than a few milliseconds, and constantly pass the control to the next state machine. When there were hardware events that needed to be serviced on time, and also computations that took a while (like FFT), then things would get ugly real fast.
Not directly answering your question, I believe in the very near future, almost every application will need to be multithreaded. The CPU performance is not growing that fast these days, which is compensated for by the increasing number of cores. Thus, if we will want our applications to stay on the top performance-wise, we'll need to find ways to utilize all your computer's CPUs and keep them busy, which is quite a hard job.
This can be done via telling your programs what to do instead of telling them exactly how. Now, this is a topic I personally find very interesting recently. Some functional languages, like F#, are able to parallelize many tasks quite easily. Well, not THAT easily, but still without the necessary infrastructure needed in more procedural-style environments.
Please take this as additional information to think about, not an attempt to answer your question.
The kind of applications that need to be threaded are the ones where you want to do more than one thing at once. Other than that no application needs to be multi-threaded.
Applications with a large workload which can be easily made parallel. The difficulty of taking your application and doing that should not be underestimated. It is easy when your data you're manipulating is not dependent upon other data but v. hard to schedule the cross thread work when there is a dependency.
Some examples I've done which are good multithreaded candidates..
running scenarios (eg stock derivative pricing, statistics)
bulk updating data files (eg adding a value / entry to 10,000 records)
other mathematical processes
E.g., you want your programs to be multithreaded when you want to utilize multiple cores and/or CPUs, even when the programs don't necessarily do many things at the same time.
EDIT: using multiple processes is the same thing. Which technique to use depends on the platform and how you are going to do communications within your program, etc.
Although frivolous, games, in general are becomming more and more threaded every year. At work our game uses around 10 threads doing physics, AI, animation, redering, network and IO.
Just want to add that caution must be taken with treads if your sharing any resources as this can lead to some very strange behavior, and your code not working correctly or even the threads locking each other out.
mutex will help you there as you can use mutex locks for protected code regions, a example of protected code regions would be reading or writing to shared memory between threads.
just my 2 cents worth.
The main purpose of multithreading is to separate time domains. So the uses are everywhere where you want several things to happen in their own distinctly separate time domains.
HERE IS A PERFECT USE CASE
If you like affiliate marketing multi-threading is essential. Kick the entire process off via a multi-threaded application.
Download merchant files via FTP, unzipping the files, enumerating through each file performing cleanup like EOL terminators from Unix to PC CRLF then slam each into SQL Server via Bulk Inserts then when all threads are complete create the full text search indexes for a environmental instance to be live tomorrow and your done. All automated to kick off at say 11:00 pm.
BOOM! Fast as lightening. Heck you have so much time left you can even download merchant images locally for the products you download, save the images as webp and set the product urls to use local images.
Yep I did it. Wrote it in C#. Works like a charm. Purchase a AMD Ryzen Threadripper 64-core with 256gb memory and fast drives like nvme, get lunch come back and see it all done or just stay around and watch all cores peg to 95%+, listen to the pc's fans kick, warm up the room and the look outside as the neighbors lights flicker from the power drain as you get shit done.
Future would be to push processing to GPU's as well.
Ok well I am pushing it a little bit with the neighbors lights flickering but all else was absolutely true. :)

Threads or asynch?

How do you make your application multithreaded ?
Do you use asynch functions ?
or do you spawn a new thread ?
I think that asynch functions are already spawning a thread so if your job is doing just some file reading, being lazy and just spawning your job on a thread would just "waste" ressources...
So is there some kind of design when using thread or asynch functions ?
If you are talking about .Net, then don't forget the ThreadPool. The thread pool is also what asynch functions often use. Spawning to much threads can actually hurt your performance. A thread pool is designed to spawn just enough threads to do the work the fastest. So do use a thread pool instead of spwaning your own threads, unless the thread pool doesn't meet your needs.
PS: And keep an eye out on the Parallel Extensions from Microsoft
Spawning threads is only going to waste resources if you start spawning tons of them, one or two extra threads isn't going to effect the platforms proformance, infact System currently has over 70 threads for me, and msn is using 32 (I really have no idea how a messenger can use that many threads, exspecialy when its minimised and not really doing anything...)
Useualy a good time to spawn a thread is when something will take a long time, but you need to keep doing something else.
eg say a calculation will take 30 seconds. The best thing to do is spawn a new thread for the calculation, so that you can continue to update the screen, and handle any user input because users will hate it if your app freezes untill its finished doing the calculation.
On the other hand, creating threads to do something that can be done almost instantly is nearly pointless, since the overhead of creating (or even just passing work to an existing thread using a thread pool) will be higher than just doing the job in the first place.
Sometimes you can break your app into a couple of seprate parts which run in their own threads. For example in games the updates/physics etc may be one thread, while grahpics are another, sound/music is a third, and networking is another. The problem here is you really have to think about how these parts will interact or else you may have worse proformance, bugs that happen seemingly "randomly", or it may even deadlock.
I'll second Fire Lancer's answer - creating your own threads is an excellent way to process big tasks or to handle a task that would otherwise be "blocking" to the rest of synchronous app, but you have to have a clear understanding of the problem that you must solve and develope in a way that clearly defines the task of a thread, and limits the scope of what it does.
For an example I recently worked on - a Java console app runs periodically to capture data by essentially screen-scraping urls, parsing the document with DOM, extracting data and storing it in a database.
As a single threaded application, it, as you would expect, took an age, averaging around 1 url a second for a 50kb page. Not too bad, but when you scale out to needing to processes thousands of urls in a batch, it's no good.
Profiling the app showed that most of the time the active thread was idle - it was waiting for I/O operations - opening of a socket to the remote URL, opening a connection to the database etc. It's this sort of situation that can easily be improved with multithreading. Rewriting to be multi-threaded and with just 5 threads instead of one, even on a single core cpu, gave an increase in throughput of over 20 times.
In this example, each "worker" thread was explicitly limited to what it did - open the remote a remote url, parse the data, store it in the db. All the "high level" processing - generating the list of urls to parse, working out which next, handling errors, all remained with the control of the main thread.
The use of threads makes you think more about the way your application needs threading and can in the long run make it easier to improve / control your performance.
Async methods are faster to use but they are a bit magic - a lot of things happen to make them possible - so it's probable that at some point you will need something that they can't give you. Then you can try and roll some custom threading code.
It all depends on your needs.
The answer is "it depends".
It depends on what you're trying to achieve. I'm going to assume that you're aiming for more performance.
The simplest solution is to find another way to improve your performance. Run a profiler. Look for hot spots. Reduce unnecessary IO.
The next solution is to break your program into multiple processes, each of which can run in their own address space. This is easiest because there is no chance of the individual processes messing each other up.
The next solution is to use threads. At this point you're opening a major can of worms, so start small, and only multi-thread the critical path of the code.
The next solution is to use asynch IO. Generally only recommended for people writing some of very heavily loaded server, and even then I would rather re-use one of the existing frameworks that abstract away the details e.g. the C++ framework ICE, or an EJB server under java.
Note that each of these solutions has multiple sub-solutions - there are different breeds of threads and different kinds of asynch IO, each with slightly different performance characteristics, but again, it's generally best to let the framework handle it for you.

Resources