Optimal Data Lake File Partition Sizes - apache-spark

The Small File Problem gets referenced a lot when discussing performance issues with Delta Lake queries. Many sources recommend file sizes of 1GB for optimal query performance.
I know Snowflake is different than Delta Lake, but I think it's interesting that Snowflake's strategy contradicts the conventional wisdom. They rely on micro-partitions, which aim to be between 50MB and 500MB before compression.
Snowflake and Delta Lake have similar features:
File Pruning - Snowflake vs Delta Lake
Metadata about contents of file - Snowflake vs Delta Lake
Can anyone explain why Snowflake thrives on smaller files while conventional wisdom suggests that Delta Lake struggles?

Disclaimer: I'm not very familiar with Snowflake, so I can only say based on the documentation & experience with Delta Lake.
Small files problem usually arise when you're storing streaming data, or something like, and store that in the formats like Parquet that rely only on the listing of the files provided by storage provider. With a lot of small files, the listing of files is very expensive, and often is the place where most of time is spent.
Delta Lake solves this problem by tracking the file names in the manifest files, and then reaching objects by file name, instead of listing all files and extracting file names from there. On Databricks, Delta has more optimizations for data skipping, etc., that could be achieved by using metadata stored in the manifest files. As I see from documentation, Snowflake has something similar under the hood.
Regarding the file size - on Delta, default size is ~1Gb, but in practice it could be much lower, depending on type of data that is stored, and if we need to update data with new data or not - when updating/deleting data, you'll need to rewrite the whole files, and if you have big files, then you're rewriting more.

Related

What are best practices to migrate parquet table to Delta?

I'm trying to convert large parquet files to delta format for performance optimization and a faster job run.
I'm trying to research the best practices to migrate huge parquet files to delta format on Databricks.
There are two general approaches to that, but it's really depends on your requirements:
Do in-place upgrade using the CONVERT TO DELTA (SQL Command) or corresponding Python/Scala/Java APIs (doc). You need to take into account following consideration - if you have a huge table, then default CONVERT TO DELTA command may take too long as it will need to collect statistics for your data. You can avoid this by adding NO STATISTICS to the command, and then it will run faster. With it, you won't be able to get benefits of data skipping, and other optimizations, but these statistics could be collected later when executing OPTIMIZE command.
Create a copy of your original table by reading original Parquet data & writing as a Delta table. After you check that everything is correct, you may remove original table. This approach have following benefits:
You can change partitioning schema if you have too many levels of partitioning in your original table
You can change the order of columns in the table to take advantage of data skipping for numeric & date/time data types - it should improve the query performance.

Spark: writing data to place that is being read from without loosing data

Help me please to understand how can I write data to the place that is also being read from without any issue, using EMR and S3.
So I need to read partitioned data, find old data, delete it, write new data back and I'm thinking about 2 ways here:
Read all data, apply a filter, write data back with save option SaveMode.Overwrite. I see here one major issue - before writing it will delete files in S3, so if EMR cluster goes down by some reason after deletion but before writing - all data will be lost. I can use dynamic partition but that would mean that in such situation I'm gonna lost data from 1 partition.
Same as above but write to the temp directory, then delete original, move everything from temp to original. But as this is S3 storage it doesn't have move operation and all files will be copied, which can be a bit pricy(I'm going to work with 200GB of data).
Is there any other way or am I'm wrong in how spark works?
You are not wrong. The process of deleting a record from a table on EMR/Hadoop is painful in the ways you describe and more. It gets messier with failed jobs, small files, partition swapping, slow metadata operations...
There are several formats, and file protocols that add transactional capability on top of a table stored S3. The open Delta Lake (https://delta.io/) format, supports transactional deletes, updates, merge/upsert and does so very well. You can read & delete (say for GDPR purposes) like you're describing. You'll have a transaction log to track what you've done.
On point 2, as long as you have a reasonable # of files, your costs should be modest, with data charges at ~$23/TB/mo. However, if you end with too many small files, then the API costs of listing the files, fetching files can add up quickly. Managed Delta (from Databricks) will help speed of many of the operations on your tables through compaction, data caching, data skipping, z-ordering
Disclaimer, I work for Databricks....

Azure Synapse loading: Split large compress files to smaller compressed files

I'm receiving this recommendation from Azure Synapse.
Recommendation details
We have detected that you can increase load throughput by splitting your compressed files that are staged in your storage account. A good rule of thumb is to split compressed files into 60 or more to maximize the parallelism of your load. Learn more
Looking at Azure's docs, this is the recommendation.
Preparing data in Azure Storage
To minimize latency, colocate your storage layer and your SQL pool.
When exporting data into an ORC File Format, you might get Java out-of-memory errors when there are large text columns. To work around this limitation, export only a subset of the columns.
All file formats have different performance characteristics. For the fastest load, use compressed delimited text files. The difference between UTF-8 and UTF-16 performance is minimal.
Split large compressed files into smaller compressed files.
What I'm trying to understand is how can I split a large compress files into smaller compress files? Is there an option for that? Thanks!
You may checkout this article How to maximize COPY load throughput with file splits.
It’s recommended to load multiple files at once for parallel processing and maximizing bulk loading performance with SQL pools using the COPY statement.
File-splitting guidance is outlined in the following documentation and this blog covers how to easily split CSV files residing in your data lake using Azure Data Factory Mapping data flows within your data pipeline.

Question about using parquet for time-series data

I'm exploring ways to store a high volume of data from sensors (time series data), in a way that's scalable and cost-effective.
Currently, I'm writing a CSV file for each sensor, partitioned by date, so my filesystem hierarchy looks like this:
client_id/sensor_id/year/month/day.csv
My goal is to be able to perform SQL queries on this data, (typically fetching time ranges for a specific client/sensor, performing aggregations, etc) I've tried loading it to Postgres and timescaledb, but the volume is just too large and the queries are unreasonably slow.
I am now experimenting with using Spark and Parquet files to perform these queries, but I have some questions I haven't been able to answer from my research on this topic, namely:
I am converting this data to parquet files, so I now have something like this:
client_id/sensor_id/year/month/day.parquet
But my concern is that when Spark loads the top folder containing the many Parquet files, the metadata for the rowgroup information is not as optimized as if I used one single parquet file containing all the data, partitioned by client/sensor/year/month/day. Is this true? Or is it the same to have many parquet files or a single partitioned Parquet file? I know that internally the parquet file is stored in a folder hierarchy like the one I am using, but I'm not clear on how that affects the metadata for the file.
The reason I am not able to do this is that I am continuously receiving new data, and from my understanding, I cannot append to a parquet file due to the nature that the footer metadata works. Is this correct? Right now, I simply convert the previous day's data to parquet and create a new file for each sensor of each client.
Thank you.
You can use Structured Streaming with kafka(as you are already using it) for real time processing of your data and store data in parquet format. And, yes you can append data to parquet files. Use SaveMode.Append for that such as
df.write.mode('append').parquet(path)
You can even partition your data on hourly basis.
client/sensor/year/month/day/hour which will further provide you performance improvement while querying.
You can create hour partition based on system time or timestamp column based on type of query you want to run on your data.
You can use watermaking for handling late records if you choose to partition based on timestamp column.
Hope this helps!
I could share my experience and technology stack that being used at AppsFlyer.
We have a lot of data, about 70 billion events per day.
Our time-series data for near-real-time analytics are stored in Druid and Clickhouse. Clickhouse is used to hold real-time data for the last two days; Druid (0.9) wasn't able to manage it. Druid holds the rest of our data, which populated daily via Hadoop.
Druid is a right candidate in case you don't need a row data but pre-aggregated one, on a daily or hourly basis.
I would suggest you let a chance to the Clickhouse, it lacks documentation and examples but works robust and fast.
Also, you might take a look at Apache Hudi.

Storing media files in Cassandra

I tried to store the audio/video files in the database.
Is cassandra able to do that ? if yes, how do we store the media files in cassandra.
How about storing the metadata and original audio files in cassandra
Yes, Cassandra is definitely able to store files in its database, as "blobs", strings of bytes.
However, it is not ideal for this use case:
First, you are limited in blob size. The hard limit is 2GB size, so large videos are out of the question. But worse, the documentation from Datastax (the commercial company behind Cassandra's development) suggests that even 1 MB (!) is too large - see https://docs.datastax.com/en/cql/3.1/cql/cql_reference/blob_r.html.
One of the reasons why huge blobs are a problem is that Cassandra offers no API for fetching parts of them - you need to read (and write) a blob in one CQL operation, which opens up all sorts of problems. So if you want to store large files in Cassandra, you'll probably want to split them up into many small blobs - not one large blob.
The next problem is that some of Cassandra's implementation is inefficient when the database contains files (even if split up to a bunch of smaller blobs). One of the problems is the compaction algorithm, which ends up copying all the data over and over (a logarithmic number of times) on disk; An implementation optimized for storing files would keep the file data and the metadata separately, and only "compact" the metadata. Unfortunately neither Cassandra nor Scylla implement such a file format yet.
All-in-all, you're probably better off storing your metadata in Cassandra but the actual file content in a different object-store implementation.

Resources