pandas get rows from one dataframe which are existed in other dataframe - python-3.x

I have two dataframes. The dataframes as follows:
df1 is
numbers
user_id
0 9154701244
1 9100913773
2 8639988041
3 8092118985
4 8143131334
5 9440609551
6 8309707235
7 8555033317
8 7095451372
9 8919206985
10 8688960416
11 9676230089
12 7036733390
13 9100914771
it's shape is (14,1)
df2 is
user_id numbers names type duration date_time
0 9032095748 919182206378 ramesh incoming 23 233445445
1 9032095748 918919206983 suresh incoming 45 233445445
2 9032095748 919030785187 rahul incoming 45 233445445
3 9032095748 916281206641 jay incoming 67 233445445
4 jakfnka998nknk 9874654411 query incoming 25 8571228412
5 jakfnka998nknk 9874654112 form incoming 42 678565487
6 jakfnka998nknk 9848022238 json incoming 10 89547212765
7 ukajhj9417fka 9984741215 keert incoming 32 8548412664
8 ukajhj9417fka 9979501984 arun incoming 21 7541344646
9 ukajhj9417fka 95463241 paru incoming 42 945151215451
10 ukajknva939o 7864621215 hari outgoing 34 49829840920
and it's shape is (10308,6)
Here in df1, the column name numbers are having the multiple unique numbers. These numbers are available in df2 and those are repeated depends on the duration. I want to get those data who all are existed in df2 based on the numbers which are available in df1.
Here is the code I've tried to get this but I'm not able to figure it out how it can be solved using pandas.
df = pd.concat([df1, df2]) # concat dataframes
df = df.reset_index(drop=True) # reset the index
df_gpby = df.groupby(list(df.columns)) #group by
idx = [x[0] for x in df_gpby.groups.values() if len(x) == 1] #reindex
df = df.reindex(idx)
It gives me only unique numbers column which are there in df2. But I need to get all the data including other columns from the second dataframe.
It would be great that anyone can help me on this. Thanks in advance.

Here is a sample dataframe, I created keeping the gist same.
df1=pd.DataFrame({"numbers":[123,1234,12345,5421]})
df2=pd.DataFrame({"numbers":[123,1234,12345,123,123,45643],"B":[1,2,3,4,5,6],"C":[2,3,4,5,6,7]})
final_df=df2[df2.numbers.isin(df1.numbers)]
Output DataFrame The result is all unique numbers that are present in df1 and present in df2 will be returned
numbers B C
0 123 1 2
1 1234 2 3
2 12345 3 4
3 123 4 5
4 123 5 6

Related

How to print out the cell value from excel using pandas?

Below is the code im using to diff two dataframes, but not sure how i can get the mismatched values cell location.
file=[random1.csv,random2.csv]
li=[]
for filename in file:
df = pd.read_csv(filename, index_col=None, header=0)
li.append(df)
df1=li[0]
df2=li[1]
print("{} comparing with {}".format(file[0],file[1]))
df3 = df2[df1.ne(df2).any(axis=1)]
print(df3)
print("{} comparing with {}".format(file[1],file[0]))
df4 = df1[df2.ne(df1).any(axis=1)]
print(df4)
output
random1.csv comparing with random2.csv
name age address
1 2 22 2
4 5 6 3
9 10 89 10
random2.csv comparing with random1.csv
name age address
1 2 22 1
4 5 6 2
9 10 89 11
kindly help on this!!
p.s : Im a newbie :)

How can I sort 3 columns and assign it to one python pandas

I have a dataframe:
df = {A:[1,1,1], B:[2012,3014,3343], C:[12,13,45], D:[111,222,444]}
but I need to join the last 3 columns in consecutive order horizontally and thus assign it to the first column, some like this:
df2 = {A:[1,1,1,2,2,2], Fusion3:[2012,12,111,3014,13,222]}
I have tried with .melt, but you are struggling with some ideas and grateful for your comments
From the desired output I'm making the assumption that the initial dataframe should have 1,2,3 in the A column rather 1,1,1
import pandas as pd
df= pd.DataFrame({'A':[1,2,3], 'B':[2012,3014,3343], 'C':[12,13,45], 'D':[111,222,444]})
df = df.set_index('A')
df = df.stack().droplevel(1)
will give you this series:
A
1 2012
1 12
1 111
2 3014
2 13
2 222
3 3343
3 45
3 444
Check melt
out = df.melt('A').drop('variable',1)
Out[15]:
A value
0 1 2012
1 2 3014
2 3 3343
3 1 12
4 2 13
5 3 45
6 1 111
7 2 222
8 3 444

Updating multiple columns of df from another df

I have two dataframes, df1 and df2. I want to update some columns(not all) of df1 from the value which is in df2 columns(names of common column is same in both dataframes) based on key column. df1 can have multiple entries of that key but in df2 each key has only one entry.
df2 :
party_id age person_name col2
0 1 12 abdjc abc
1 2 35 fAgBS sfd
2 3 65 Afdc shd
3 5 34 Afazbf qfwjk
4 6 78 asgsdb fdgd
5 7 35 sdgsd dsfbds
df1:
party_id account_id product_type age dob status col2
0 1 1 Current 25 28-01-1994 active sdag
1 2 2 Savings 31 14-07-1988 pending asdg
2 3 3 Loans 65 22-07-1954 frozen sgsdf
3 3 4 Over Draft Facility 93 29-01-1927 active dsfhgd
4 4 5 Mortgage 93 01-03-1926 pending sdggsd
In this example I want to update age, col2 in df1 based on the value present in df2. And key column here is party_id.
I tried mapping df2 into dict with their key (column wise, one column at time). Here key_name = party_id and column_name = age
dict_key = df2[key_name]
dict_value = df2[column_name]
temp_dict = dict(zip(dict_key, dict_value))
and then map it to df1
df1[column_name].map(temp_dict).fillna(df1[column_name])
But issue here is it is only mapping the one entry not all for that key value.In this example party_id == 3 have multiple entry in df1.
Keys which is not in df2, their respective value for that column should be unchanged.
Can anyone help me with efficient solution as my df1 is of big size more than 500k? So that all columns can update at the same time.
df2 is of moderate size around 3k or something.
Thanks
Idea is use DataFrame.merge with left join first, then get columns with are same in both DataFrames to cols and replace missing values by original values by DataFrame.fillna:
df = df1.merge(df2.drop_duplicates('party_id'), on='party_id', suffixes=('','_'), how='left')
cols = df2.columns.intersection(df1.columns).difference(['party_id'])
df[cols] = df[cols + '_'].rename(columns=lambda x: x.strip('_')).fillna(df[cols])
df = df[df1.columns]
print (df)
party_id age person_name col2
0 1 25.0 abdjc sdag
1 2 31.0 fAgBS asdg
2 3 65.0 Afdc sgsdf
3 5 34.0 Afazbf qfwjk
4 6 78.0 asgsdb fdgd
5 7 35.0 sdgsd dsfbds

Find occurrences of conditional value from one column and count values from another column in a dataframe

I have a dataframe containing userIds, week number, and a column X as shown below:
I am trying to group by the userIds if X is greater than 3 for 3 weeks.
I have tried using groupby and lambda in pandas but I am stuck
weekly_X = df.groupby(['Userid','Week #'], as_index=False)
UserIds Week X
123 14 3
123 15 4
123 16 7
123 17 2
123 18 1
456 14 4
456 15 5
456 16 11
456 17 2
456 18 6
The result I am aiming for is a dataframe containing user 456 and how many weeks the condition occurred.
df_3 = df.groupby('UserIds').apply(lambda x: (x.X > 3).sum() > 3).to_frame('ID_want').reset_index()
df = df[df.UserIds.isin(df_3.loc[df_3.ID_want == 1,'UserIds'])]
Get counts of values greater like 3 with aggregate sum and then filter values greater like 3:
s = df['X'].gt(3).astype(int).groupby(df['UserIds']).sum()
out = s[s.gt(3)].reset_index(name='count')
print (out)
UserIds count
0 456 4

How to remove the repeated row spaning two dataframe index in python

I have a dataframe as follow:
import pandas as pd
d = {'location1': [1, 2,3,8,6], 'location2':
[2,1,4,6,8]}
df = pd.DataFrame(data=d)
The dataframe df means there is a road between two locations. look like:
location1 location2
0 1 2
1 2 1
2 3 4
3 8 6
4 6 8
The first row means there is a road between locationID1 and locationID2, however, the second row also encodes this information. The forth and fifth rows also have repeated information. I am trying the remove those repeated by keeping only one row. Any of row is okay.
For example, my expected output is
location1 location2
0 1 2
2 3 4
4 6 8
Any efficient way to do that because I have a large dataframe with lots of repeated rows.
Thanks a lot,
It looks like you want every other row in your dataframe. This should work.
import pandas as pd
d = {'location1': [1, 2,3,8,6], 'location2':
[2,1,4,6,8]}
df = pd.DataFrame(data=d)
print(df)
location1 location2
0 1 2
1 2 1
2 3 4
3 8 6
4 6 8
def Every_other_row(a):
return a[::2]
Every_other_row(df)
location1 location2
0 1 2
2 3 4
4 6 8

Resources