go threads sticking around after the load goes down - multithreading

I have go based reverse proxy server. When I monitor metrics on the app (using prometheus), Ive noticed that when the load on the app goes up, the threads (go_threads) on the app goes from around 20 to about 55. Then after the load goes away, these threads still around, even after many hours.
However I can see the go_goroutines and the memory usage go down, but not the threads.
I have a couple of questions
What is the default size of the thread pool in go?
How long do idle threads stick around?

What is the default size of the thread pool in go?
GOMAXPROCS
How long do idle threads stick around?
Until the process terminates
Notice:
There is no limit to the number of threads that can be blocked in system calls on behalf of Go code; those do not count against the GOMAXPROCS limit.
This means your best chance to keep thread count low is to have few blocking system calls.

For your first question, I couldn't find a default size of the thread pool, however the documentation for runtime/debug.SetMaxThreads seems to indicate that a new thread is created whenever an existing OS thread is blocked. It could be the case that the Go runtime starts with only a single OS thread and creates more as needed, however that could vary depending on the version of Go.
As for your second question, idle OS threads stick currently stick around forever. There's an open issue https://github.com/golang/go/issues/14592 that deals with closing idle threads, however as of the latest Go release (1.14) there has been little to no work towards doing so.

Related

Which worker_concurrency should I have for IO-bound tasks in Celery?

I have a couple of tasks which handle API requests. The API might actually take quite a long time to respond. 5s-10s is not uncommon.
How do I decide which value is reasonable for worker_concurrency for IO-Bound tasks?
The docs just state:
The number of concurrent worker processes/threads/green threads executing tasks.
If you’re doing mostly I/O you can have more processes, but if mostly CPU-bound, try to keep it close to the number of CPUs on your machine. If not set, the number of CPUs/cores on the host will be used.
What happens if I choose this number too high? Conceptually, I would expect that the OS will then switch so often between threads that (at some point) the thread switching itself becomes a high CPU load. Or is there more to it?
Reading this, I think I should use eventlet for IO-bound tasks:
celery -A proj worker -P eventlet --concurreny=500
Is worker_concurrency the same as the --concurrency flag?
I stumbled apon the same issue. So as you read in this blog post, concurrency in this situation means the number of Greenlets or green threads. So the switching between them is not the same as switching between threads, because each of the green threads
"voluntarily or explicitly give[s] up control to one another at specified points in your code."
And
"Greenlets are managed in application space and not in kernel space."
As stated in the blog post you read.
On the other hand switching between threads is done by the task scheduler of the underlying OS. So, with that in mind it is not a question which can be answered by giving you a number.
It seems to me that the number of green threads you use, should be tested for your scenario and the machine your celery task is executed on, in order to gain the best performance. Maybe start with 25, then 100, 500, 1000 and so on, to get a glimpse on the different times your programm takes to fully execute.
Furthermore you can test the performance of your program not just with the eventlet pool, but also the gevent pool which is pretty similar, but not the same.

Necessity of gracefully ending a thread

If I am building a multithreaded application, all its threads would automatically get killed when I abort the application.
If I want a thread to have a lifetime equal to that of the main thread, do I really need to gracefully end the thread, or let the application abort take care of killing it?
Edit: As threading rules depend on the OS, I'd like to hear opinions for the following too:
Android
Linux
iOS
It depends on what the thread is doing.
When a thread is killed, it's execution stops at any point in the code, meaning some operations may not be finished, like
writing a file
sending network messages
But the OS will
close all handles the application owns
release any locks
free all memory
close any open file
etc...
So, as long as you can make sure that all your files etc. are in a consistent state, you don't have to worry about the system resources.
I know this is true for Windows, and I would be very surprised if it was different on other OSes. The time when a application that didn't release all resources could affect the entire system is long gone, fortunately.
No. With most non-trivial OS, you do not need to explicitly/gracefully terminate app-lifetime threads unless there is a specific and overriding need to do so.
Just one reason is that you cannot always actually do it with user code. User-level code cannot stop a thread that is running on another core than the thread requesting the stop. The OS can, and does.
Your linux/Windows OS is very good indeed at stopping threads in any state on an core and releasing resources like thread stacks, heaps, OS object handles/fd's etc. at process-termination. It's had millions of hours of testing on systems world-wide, something that your own user code is very unlikely to ever experience. If you can do so, you should let the OS do what it's good at.
In other posts, several cases have been made where user-level termination of a thread may be unavoidable. Inter-process comms is one area, as are DB connections/transactions. If you are forced into it by your requirements, then fine, go for it but, otherwise, don't try - it's a waste of time and effort writing/testing/debugging thread-stop code to do what the OS can do effectively on its own.
Beware of premature stoptimization.

Mutithreading thread control

How do I control the number of threads that my program is working on?
I have a program that is now ready for mutithreading but one problem is that the program is extremely memory intensive and i have to limit the number of threads running so that i don't run out of ram. The main program goes through and creates a whole bunch of handles and associated threads in suspended state.
I want the program to activate a set number of threads and when one thread finishes, it will automatically unsuspended the next thread in line until all the work has been completed. How do i do this?
Someone has once mentioned something about using a thread handler, but I can't seem to find any information about how to write one or exactly how it would work.
If anyone can help, it would be greatly appreciated.
Using windows and visual c++.
Note: i don't need to worry about the traditional problems of access with the threads, each one is completely independent of each other, its more of like batch processing rather than true mutithreading of a program.
Thanks,
-Faken
Don't create threads explicitly. Create a thread pool, see Thread Pools and queue up your work using QueueUserWorkItem. The thread pool size should be determined by the number of hardware threads available (number of cores and ratio of hyperthreading) and the ratio of CPU vs. IO your work items do. By controlling the size of the thread pool you control the number of maximum concurrent threads.
A Suspended thread doesn't use CPU resources, but it still consumes memory, so you really shouldn't be creating more threads than you want to run simultaneously.
It is better to have only as many threads as your maximum number of simultaneous tasks, and to use a queue to pass units of work to the pool of worker threads.
You can give work to the standard pool of threads created by Windows using the Windows Thread Pool API.
Be aware that you will share these threads and the queue used to submit work to them with all of the code in your process. If, for some reason, you don't want to share your worker threads with other code in your process, then you can create a FIFO queue, create as many threads as you want to run simultaneously and have each of them pull work items out of the queue. If the queue is empty they will block until work items are added to the queue.
There is so much to say here.
There are a few ways
You should only create as many thread handles as you plan on running at the same time, then reuse them when they complete. (Look up thread pool).
This guarantees that you can never have too many running at the same time. This raises the question of funding out when a thread completes. You can have a callback be called just before a thread terminates where a parameter in that callback is the thread handle that just finished. Use Boost bind and boost signals for that. When the callback is called, look for another task for that thread handle and restart the thread. That way all you have to do is add to the "tasks to do" list and the callback will remove the tasks for you. No polling needed, and no worries about too many threads.

Question about app with multiple threads in a few CPU-machine

Given a machine with 1 CPU and a lot of RAM. Besides other kinds of applications (web server etc.), there are 2 other server applications running on that machine doing the exact same kind of processing although one uses 10 threads and the other users 1 thread. Assume the processing logic for each request is 100% CPU-bound and typically takes no longer than 2 seconds to finish. The question is whose throughput, in terms of transactions processed per minute, might be better? Why?
Note that the above is not a real environment, I just make up the data to make the question clear. My current thinking is that there should be no difference because the apps are 100% CPU-bound and therefore if the machine can handle 30 requests per minute for the 2nd app, it will also be able to handle 3 requests per minute for each of the 10 threads of the 1st app. But I'm glad to be proven wrong, given the fact that there are other applications running in the machine and one application might not be always given 100% CPU time.
There's always some overhead involved in task switching, so if the threads aren't blocking on anything, fewer threads is generally better. Also, if the threads aren't executing the same part of code, you'll get some cache flushing each time you swtich.
On the other hand, the difference might not be measurable.
Interesting question.
I wrote a sample program that does just this. It has a class that will go do some processor intensive work, then return. I specify the total number of threads I want to run, and the total number of times I want the work to run. The program will then equally divide the work between all the threads (if there's only one thread, it just gets it all) and start them all up.
I ran this on a single proc VM since I could find a real computer with only 1 processor in it anymore.
Run independently:
1 Thread 5000 Work Units - 50.4365sec
10 Threads 5000 Work Units - 49.7762sec
This seems to show that on a one proc PC, with lots of threads that are doing processor intensive work, windows is smart enough not to rapidly switch them back and fourth, and they take about the same amount of time.
Run together (or as close as I could get to pushing enter at the same time):
1 Thread 5000 Work Units - 99.5112sec
10 Threads 5000 Work Units - 56.8777sec
This is the meat of the question. When you run 10 threads + 1 thread, they all seem to be scheduled equally. The 10 threads each took 1/10th longer (because there was an 11th thread running) while the other thread took almost twice its time (really, it got 1/10th of its work done in the first 56sec, then did the other 9/10ths in the next 43sec...which is about right).
The result: Window's scheduler is fair on a thread level, but not on a process level. If you make a lot of threads, it you can leave the other processes that weren't smart enought to make lots of threads high and dry. Or just do it right and us a thread pool :-)
If you're interested in trying it for yourself, you can find my code:
http://teeks99.com/ThreadWorkTest.zip
The scheduling overhead could make the app with 10 threads slower than the one with 1 thread. You won't know for sure unless you create a test.
For some background on multithreading see http://en.wikipedia.org/wiki/Thread_(computer_science)
This might very well depend on the operating system scheduler. For example, back in single-thread days the scheduler knew only about processes, and had measures like "niceness" to figure out how much to allocate.
In multithreaded code, there is probably a way in which one process that has 100 threads doesn't get 99% of the CPU time if there's another process that has a single thread. On the other hand, if you have only two processes and one of them is multithreaded I would suspect that the OS may give it more overall time. However, AFAIK nothing is really guaranteed.
Switching costs between threads in the same process may be cheaper than switching between processes (e.g., due to cache behavior).
One thing you must consider is wait time on the other end of the transaction. Having multiple threads will allow you to be waiting for a response on one while preparing the next transaction on the next. At least that's how I understand it. So I think a few threads will turn out better than one.
On the other hand you must consider the overhead involved with dealing on multiple threads. The details of the application are important part of the consideration here.

Many threads or as few threads as possible?

As a side project I'm currently writing a server for an age-old game I used to play. I'm trying to make the server as loosely coupled as possible, but I am wondering what would be a good design decision for multithreading. Currently I have the following sequence of actions:
Startup (creates) ->
Server (listens for clients, creates) ->
Client (listens for commands and sends period data)
I'm assuming an average of 100 clients, as that was the max at any given time for the game. What would be the right decision as for threading of the whole thing? My current setup is as follows:
1 thread on the server which listens for new connections, on new connection create a client object and start listening again.
Client object has one thread, listening for incoming commands and sending periodic data. This is done using a non-blocking socket, so it simply checks if there's data available, deals with that and then sends messages it has queued. Login is done before the send-receive cycle is started.
One thread (for now) for the game itself, as I consider that to be separate from the whole client-server part, architecturally speaking.
This would result in a total of 102 threads. I am even considering giving the client 2 threads, one for sending and one for receiving. If I do that, I can use blocking I/O on the receiver thread, which means that thread will be mostly idle in an average situation.
My main concern is that by using this many threads I'll be hogging resources. I'm not worried about race conditions or deadlocks, as that's something I'll have to deal with anyway.
My design is setup in such a way that I could use a single thread for all client communications, no matter if it's 1 or 100. I've separated the communications logic from the client object itself, so I could implement it without having to rewrite a lot of code.
The main question is: is it wrong to use over 200 threads in an application? Does it have advantages? I'm thinking about running this on a multi-core machine, would it take a lot of advantage of multiple cores like this?
Thanks!
Out of all these threads, most of them will be blocked usually. I don't expect connections to be over 5 per minute. Commands from the client will come in infrequently, I'd say 20 per minute on average.
Going by the answers I get here (the context switching was the performance hit I was thinking about, but I didn't know that until you pointed it out, thanks!) I think I'll go for the approach with one listener, one receiver, one sender, and some miscellaneous stuff ;-)
use an event stream/queue and a thread pool to maintain the balance; this will adapt better to other machines which may have more or less cores
in general, many more active threads than you have cores will waste time context-switching
if your game consists of a lot of short actions, a circular/recycling event queue will give better performance than a fixed number of threads
To answer the question simply, it is entirely wrong to use 200 threads on today's hardware.
Each thread takes up 1 MB of memory, so you're taking up 200MB of page file before you even start doing anything useful.
By all means break your operations up into little pieces that can be safely run on any thread, but put those operations on queues and have a fixed, limited number of worker threads servicing those queues.
Update: Does wasting 200MB matter? On a 32-bit machine, it's 10% of the entire theoretical address space for a process - no further questions. On a 64-bit machine, it sounds like a drop in the ocean of what could be theoretically available, but in practice it's still a very big chunk (or rather, a large number of pretty big chunks) of storage being pointlessly reserved by the application, and which then has to be managed by the OS. It has the effect of surrounding each client's valuable information with lots of worthless padding, which destroys locality, defeating the OS and CPU's attempts to keep frequently accessed stuff in the fastest layers of cache.
In any case, the memory wastage is just one part of the insanity. Unless you have 200 cores (and an OS capable of utilizing) then you don't really have 200 parallel threads. You have (say) 8 cores, each frantically switching between 25 threads. Naively you might think that as a result of this, each thread experiences the equivalent of running on a core that is 25 times slower. But it's actually much worse than that - the OS spends more time taking one thread off a core and putting another one on it ("context switching") than it does actually allowing your code to run.
Just look at how any well-known successful design tackles this kind of problem. The CLR's thread pool (even if you're not using it) serves as a fine example. It starts off assuming just one thread per core will be sufficient. It allows more to be created, but only to ensure that badly designed parallel algorithms will eventually complete. It refuses to create more than 2 threads per second, so it effectively punishes thread-greedy algorithms by slowing them down.
I write in .NET and I'm not sure if the way I code is due to .NET limitations and their API design or if this is a standard way of doing things, but this is how I've done this kind of thing in the past:
A queue object that will be used for processing incoming data. This should be sync locked between the queuing thread and worker thread to avoid race conditions.
A worker thread for processing data in the queue. The thread that queues up the data queue uses semaphore to notify this thread to process items in the queue. This thread will start itself before any of the other threads and contain a continuous loop that can run until it receives a shut down request. The first instruction in the loop is a flag to pause/continue/terminate processing. The flag will be initially set to pause so that the thread sits in an idle state (instead of looping continuously) while there is no processing to be done. The queuing thread will change the flag when there are items in the queue to be processed. This thread will then process a single item in the queue on each iteration of the loop. When the queue is empty it will set the flag back to pause so that on the next iteration of the loop it will wait until the queuing process notifies it that there is more work to be done.
One connection listener thread which listens for incoming connection requests and passes these off to...
A connection processing thread that creates the connection/session. Having a separate thread from your connection listener thread means that you're reducing the potential for missed connection requests due to reduced resources while that thread is processing requests.
An incoming data listener thread that listens for incoming data on the current connection. All data is passed off to a queuing thread to be queued up for processing. Your listener threads should do as little as possible outside of basic listening and passing the data off for processing.
A queuing thread that queues up the data in the right order so everything can be processed correctly, this thread raises the semaphore to the processing queue to let it know there's data to be processed. Having this thread separate from the incoming data listener means that you're less likely to miss incoming data.
Some session object which is passed between methods so that each user's session is self contained throughout the threading model.
This keeps threads down to as simple but as robust a model as I've figured out. I would love to find a simpler model than this, but I've found that if I try and reduce the threading model any further, that I start missing data on the network stream or miss connection requests.
It also assists with TDD (Test Driven Development) such that each thread is processing a single task and is much easier to code tests for. Having hundreds of threads can quickly become a resource allocation nightmare, while having a single thread becomes a maintenance nightmare.
It's far simpler to keep one thread per logical task the same way you would have one method per task in a TDD environment and you can logically separate what each should be doing. It's easier to spot potential problems and far easier to fix them.
What's your platform? If Windows then I'd suggest looking at async operations and thread pools (or I/O Completion Ports directly if you're working at the Win32 API level in C/C++).
The idea is that you have a small number of threads that deal with your I/O and this makes your system capable of scaling to large numbers of concurrent connections because there's no relationship between the number of connections and the number of threads used by the process that is serving them. As expected, .Net insulates you from the details and Win32 doesn't.
The challenge of using async I/O and this style of server is that the processing of client requests becomes a state machine on the server and the data arriving triggers changes of state. Sometimes this takes some getting used to but once you do it's really rather marvellous;)
I've got some free code that demonstrates various server designs in C++ using IOCP here.
If you're using unix or need to be cross platform and you're in C++ then you might want to look at boost ASIO which provides async I/O functionality.
I think the question you should be asking is not if 200 as a general thread number is good or bad, but rather how many of those threads are going to be active.
If only several of them are active at any given moment, while all the others are sleeping or waiting or whatnot, then you're fine. Sleeping threads, in this context, cost you nothing.
However if all of those 200 threads are active, you're going to have your CPU wasting so much time doing thread context switches between all those ~200 threads.

Resources