Specifying agent properties when using .inject() - modeling

For logic testing purposes, I am using a clickable button triggering "source.inject()." The preceding logic for the agents is dependent on agent characteristics. Thus, it is preferable to have control over which characteristics they get during initiation when testing the model logic. Searching the AnyLogic documentation on the source block's inject()-function does not show any way to mandate the initial characteristics.
I have tried using "add_patients();" this allows for the creation of agents, and I can specify the characteristics inside the parentheses as I like. However, the agents will not enter the statechart if I use this function.

instead of using a source, use a enter block, then you can control the parameters of your agent. So instead of source.inject() you will do:
Patient patient=add_patients(a,b,c,d);
enter.take(patient);
Or course you will need a population of patients defined somewhere to do that.
If you don't have a population of agents then you can do
Patient patient=new Patient(a,b,c,d);
enter.take(patient);

Related

CQRS Read Model Projections: How complex is too complex a data transformation

I want to sanity check myself on a view projection, in regards to if an intermediary concept can purely exist in the read model while providing a bridge between commands.
Let me use a contrived example to explain.
We place an order which raises an OrderPlaced event. The workflow then involves generating a picking slip, which is used to prepare a shipment.
A picking slip can be generated from an order (or group of orders) without any additional information being supplied from any external source or user. Is it acceptable then that the picking slip can be represented purely as a read model?
So:
PlaceOrderCommand -> OrderPlacedEvent
OrderPlacedEvent -> PickingSlipView
The warehouse manager can then view a picking slip, select the lines they would like to ship, and then perform a PrepareShipment command. A ShipmentPrepared event will then update the original order, and remove the relevant lines from the PickingSlipView.
I know it's a toy example, but I have a conceptually similar use case where a colleague believes the PickingSlip should be a domain entity/aggregate in its own right, as it's conceptually different to order. So you have PlaceOrder, GeneratePickingSlip, and PrepareShipment commands.
The GeneratePickingSlip command however simply takes an order number (identifier), transforms the order data into a picking slip entity, and persists the entity. You can't modify or remove a picking slip or perform any action on it, apart from using it to prepare a shipment.
This feels like introducing unnecessary overhead on the write model, for what is ultimately just a transformation of existing information to enable another command.
So (and without delving deeply into the problem space of warehouses and shipping)...
Is what I'm proposing a legitimate use case for a read model?
Acting as an intermediary between two commands, via transformation of some data into a different view. Or, as my colleague proposes, should every concept be represented in the write model in all cases?
I feel my approach is simpler, and avoiding unneeded complexity, but I'm new to CQRS and so perhaps missing something.
Edit - Alternative Example
Providing another example to explore:
We have a book of record for categories, where each record is information about products and their location. The book of record is populated by an external system, and contains SKU numbers, mapped to available locations:
Book of Record (Electronics)
SKU# Location1 Location2 Location3 ... Location 10
XXXX Introduce Remove Introduce ... N/A
YYYY N/A Introduce Introduce ... Remove
Each book of record is an entity, and each line is a value object.
The book of record is used to generate different Tasks (which are grouped in a TaskPlan to be assigned to a person). The plan may only cover a subset of locations.
There are different types of Tasks: One TaskPlan is for the individual who is on a location to add or remove stock from shelves. Call this an AllocateStock task. Another type of Task exists for a regional supervisor managing multiple locations, to check that shelving is properly following store guidelines, say CheckDisplay task. For allocating stock, we are interested in both introduced and removed SKUs. For checking the displays, we're only interested in newly Introduced SKUs, etc.
We are exploring two options:
Option 1
The person creating the tasks has a View (read model) that allows them to select Book of Records. Say they select Electronics and Fashion. They then select one or more locations. They could then submit a command like:
GenerateCheckDisplayTasks(TaskPlanId, List<BookOfRecordId>, List<Locations>)
The commands would then orchestrate going through the records, filtering out locations we don't need, processing only the 'Introduced' items, and creating the corresponding CheckDisplayTasks for each SKU in the TaskPlan.
Option 2
The other option is to shift the filtering to the read model before generating the tasks.
When a book of record is added a view model for each type of task is maintained. The data might be transposed, and would only include relevant info. ie. the CheckDisplayScopeView might project the book of record to:
Category SKU Location
Electronics (BookOfRecordId) XXXX Location1
Electronics (BookOfRecordId) XXXX Location3
Electronics (BookOfRecordId) YYYY Location2
Electronics (BookOfRecordId) YYYY Location3
Fashion (BookOfRecordId) ... ... etc
When generating tasks, the view enables the user to select the category and locations they want to generate the tasks for. Perhaps they select the Electronics category and Location 1 and 3.
The command is now:
GenerateCheckDisplayTasks(TaskPlanId, List<BookOfRecordId, SKU, Location>)
Where the command now no longer is responsible for the logic needed to filter out the locations, the Removed and N/A items, etc.
So the command for the first option just submits the ID of the entity that is being converted to tasks, along with the filter options, and does all the work internally, likely utilizing domain services.
The second option offloads the filtering aspect to the view model, and now the command submits values that will generate the tasks.
Note: In terms of the guidance that Aggregates shouldn't appear out of thin air, the Task Plan aggregate will create the Tasks.
I'm trying to determine if option 2 is pushing too much responsibility onto the read model, or whether this filtering behavior is more applicable there.
Sorry, I attempted to use the PickingSlip example as I thought it would be a more recognizable problem space, but realize now that there are connotations that go along with the concept that may have muddied the waters.
The answer to your question, in my opinion, very much depends on how you design your domain, not how you implement CQRS. The way you present it, it seems that all these operations and aggregates are in the same Bounded Context but at first glance, I would think that there are 3 (naming is difficult!):
Order Management or Sales, where orders are placed
Warehouse Operations, where goods are packaged to be shipped
Shipments, where packages are put in trucks and leave
When an Order is Placed in Order Management, Warehouse reacts and starts the Packaging workflow. At this point, Warehouse should have all the data required to perform its logic, without needing the Order anymore.
The warehouse manager can then view a picking slip, select the lines they would like to ship, and then perform a PrepareShipment command.
To me, this clearly indicates the need for an aggregate that will ensure the invariants are respected. You cannot select items not present in the picking slip, you cannot select more items than the quantities specified, you cannot select items that have already been packaged in a previous package and so on.
A ShipmentPrepared event will then update the original order, and remove the relevant lines from the PickingSlipView.
I don't understand why you would modify the original order. Also, removing lines from a view is not a safe operation per se. You want to guarantee that concurrency doesn't cause a single item to be placed in multiple packages, for example. You guarantee that using an aggregate that contains all the items, generates the packaging instructions, and marks the items of each package safely and transactionally.
Acting as an intermediary between two commands
Aggregates execute the commands, they are not in between.
Viewing it from another angle, an indication that you need that aggregate is that the PrepareShippingCommand needs to create an aggregate (Shipping), and according to Udi Dahan, you should not create aggregate roots (out of thin air). Instead, other aggregate roots create them. So, it seems fair to say that there needs to be some aggregate, which ensures that the policies to create shippings are applied.
As a final note, domain design is difficult and you need to know the domain very well, so it is very likely that my proposed solution is not correct, but I hope the considerations I made on each step are helpful to you to come up with the right solution.
UPDATE after question update
I read a couple of times the updated question and updated several times my answer, but ended up every time with answers very specific to your example again and I'm most likely missing a lot of details to actually be helpful (I'd be happy to discuss it on another channel though). Therefore, I want to go back to the first sentence of your question to add an important comment that I missed:
an intermediary concept can purely exist in the read model, while providing a bridge between commands.
In my opinion, read models are disposable. They are not a single source of truth. They are a representation of the data to easily fulfil the current query needs. When these query needs change, old read models are deleted and new ones are created based on the data from the write models.
So, only based on this, I would recommend to not prepare a read model to facilitate your commands operations.
I think that your solution is here:
When a book of record is added a view model for each type of task is maintained. The data might be transposed, and would only include relevant info.
If I understand it correctly, what you should do here is not create view model, but create an Aggregate (or multiple). Then this aggregate can receive the commands, apply the business rules and mutate the state. So, instead of having a domain service reading data from "clever" read models and putting it all together, you have an aggregate which encapsulates the data it needs and the business logic.
I hope it makes sense. It's a broad topic and we could talk about it for hours probably.

How can I have bixby repeat an action but forget previous inputs?

I am working on a capsule that accepts an address and a zip code and will estimate the value of a property. At the results view, I would like to add a conversation driver to see if the user would want to get an estimate of another property. I would want to train an utterance to initiate the same action but also cause Bixby to forget the address and zip from the previous action.
From the testing i've done, it looks like continuations will hold on to values from the previous action. Is there a way to cause a continuation to forget those values? Or is there another way to accomplish this sort of action-repeat?
You might want to look into the transient feature (documentation link) that you can define for concepts (zipcode, address, etc.).
Concepts marked transient will not be preserved in context and should provide you with what you need.

Relationship between Parameter set context and model mode?

Origen has modes for the top level DUT and IP. However, the mode API doesn't allow the flexibility to define attributes at will. There are pre-defined attributes, some of which (e.g. typ_voltage) look specific to a particular company or device.
In contrast, the Parameters module does allow flexible parameter/attribute definitions to be created within a 'context'. What is really the conceptual difference between a chip 'mode' and a parameter 'context'? They both require the user to set them.
add_mode :mymode do |m|
m.typ_voltage = 1.0.V
# I believe I am limited to what I can define here
end
define_params :mycontext do |params|
params.i.can.put.whatever.i.want = 'bdedkje'
end
They both contain methods with_modes and with_params that look similar in function. Why not make the mode attributes work exactly like the more flexible params API?
thx
Being able to arbitrarily add named attributes to a mode seems like a good idea to me, but you are right that it is not supported today.
No particular reason for that other than nobody has seen a need for it until now, but there would be no problems accepting a PR to add it.
Ideally, when implementing that, it would be good to try and do it via a module which can then be included into other classes to provide the same functionality e.g. to give pins, bits, etc. the same ability.

How to ease updating inferno with web performance test scripts

Updating can performance test script e.g. with LoadRunner can take a lot of time and be quite frustrating. If there has been some updates with the applications, you usually have to run the script and then find out what has to be changed, update and run again and so on. Does anyone have some concrete best practices how to ease this updating inferno? One obvious thing is good communication with developers.
It depends on the kind of updates. If the update is dramatic, like adding new fields for user to fill in, then, someone has to manually touch up the test scripts.
If, however, the update is minor, for example, some changes to the hidden fields or changes to the internal names of user-facing fields, then it's possible to write a script that checks the change and automatically updates the test script.
One of the performance test platforms, NetGend, automatically takes care of the hidden fields and the internal names of user-facing fields so it's very easy to create a script to performance-test a HTML form. Tester only needs to fill in the values that he/she would have to enter using a browser, so no correlation is necessary there. Please send me a message if you need to know more about it.
There are many things you can do to insulate your scripts from build to build variability. The higher up the OSI stack you go the lower the maintenance charge, but the higher the resource cost for the virtual user type. Assuming changes are limited to page level resources and a few hidden fields here and there for web sites or applications, then you can record in HTML mode. You blast the EXTRARES sections as the page parser in HTML mode will automatically parse the page and load the page resources even without an explicit reference - It can be a real pain to keep these sections in synch if you have developers who are experimenting quite a bit.
Next up, for forms which have a very high velocity in terms of change consider the use of a web_custom_request() for the one form. You can use correlation statements to pick up all of the name|value pairs as needed and build the form submit dynamically. There will be a little bit more up front work for this but you should have pay offs at around the fourth changed build where you would normally have been rebuilding some scripts.
Take a look at all of the hosts referenced in your code. Parameterize all of these items. I have a template that I use for web virtual users which pairs a default value and the ability to change any of the host names via the control panel extra attributes section. Take a look at the example for lr_get_attrib_string() for how you might implement the pickup and pair that with a check for NULL and a population with a default value in your code
This is going to seem counter intuitive, but comment your script heavily for changes that are occurring often so you know where to take the extra labor change up front to handle a more dynamic data set.
Almost nothing you do with any tool can save you from struuctural changes in the design and flow of the app, such as the insertion of a new page in the workflow, but paying attention to the design on the high change pages, of which there are typically a small number, can result in a test code with a very long life.
Of course if your application is web services based then there is a natual long life to the use of exposed public services. Code may change on the back end of the service, but typically the exposed public interface is very stable.

In CQRS, how do I communicate a list of allowable methods on an aggrregate to the UI?

I have an aggregate root 'Order', and it has a number of methods on it which internally set its 'Status' field:
Submit
Place On Hold
Take Off Hold
Confirm
Cancel
etc.
The available actions are dependent upon the current Status of the order (e.g. it can't be put on hold if it's already on hold). The problem is that I need to provide a query to tell the UI which commands are are available so I can hide the operations that would otherwise throw an InvalidOperationException.
How do I do this with minimal DRY violation?
The simplest solution is to project current status along with available transitions to read/query model and select it along with the data to display.
Example:
PlaceOnHoldCommand results in OrderPlacedOnHoldEvent which (besides being put in EventStore) is published and handled by OrderTransitionsEventHandler which denormalizes available transitions to a DB table associated with Order. The client selects available transitions and acts accordingly (hides unavailable buttons or sth. like that).
This is of course one of options. Don't expect however that there will be no duplication whatsoever. CQRS helps to manage complexity and sometimes this means slight violations of DRY occur.

Resources