This is what the dataframe looks like:
+---+-----------------------------------------+-----+
|eco|eco_name |count|
+---+-----------------------------------------+-----+
|B63|Sicilian, Richter-Rauzer Attack |5 |
|D86|Grunfeld, Exchange |3 |
|C99|Ruy Lopez, Closed, Chigorin, 12...cd |5 |
|A44|Old Benoni Defense |3 |
|C46|Three Knights |1 |
|C08|French, Tarrasch, Open, 4.ed ed |13 |
|E59|Nimzo-Indian, 4.e3, Main line |2 |
|A20|English |2 |
|B20|Sicilian |4 |
|B37|Sicilian, Accelerated Fianchetto |2 |
|A33|English, Symmetrical |8 |
|C77|Ruy Lopez |8 |
|B43|Sicilian, Kan, 5.Nc3 |10 |
|A04|Reti Opening |6 |
|A59|Benko Gambit |1 |
|A54|Old Indian, Ukrainian Variation, 4.Nf3 |3 |
|D30|Queen's Gambit Declined |19 |
|C01|French, Exchange |3 |
|D75|Neo-Grunfeld, 6.cd Nxd5, 7.O-O c5, 8.dxc5|1 |
|E74|King's Indian, Averbakh, 6...c5 |2 |
+---+-----------------------------------------+-----+
Schema:
root
|-- eco: string (nullable = true)
|-- eco_name: string (nullable = true)
|-- count: long (nullable = false)
I want to filter it so that only two rows with minimum and maximum counts remain.
The output dataframe should look something like:
+---+-----------------------------------------+--------------------+
|eco|eco_name |number_of_occurences|
+---+-----------------------------------------+--------------------+
|D30|Queen's Gambit Declined |19 |
|C46|Three Knights |1 |
+---+-----------------------------------------+--------------------+
I'm a beginner, I'm really sorry if this is a stupid question.
No need to apologize since this is the place to learn! One of the solutions is to use the Window and rank to find the min/max row:
df = spark.createDataFrame(
[('a', 1), ('b', 1), ('c', 2), ('d', 3)],
schema=['col1', 'col2']
)
df.show(10, False)
+----+----+
|col1|col2|
+----+----+
|a |1 |
|b |1 |
|c |2 |
|d |3 |
+----+----+
Just use filtering to find the min/max count row after the ranking:
df\
.withColumn('min_row', func.rank().over(Window.orderBy(func.asc('col2'))))\
.withColumn('max_row', func.rank().over(Window.orderBy(func.desc('col2'))))\
.filter((func.col('min_row') == 1) | (func.col('max_row') == 1))\
.show(100, False)
+----+----+-------+-------+
|col1|col2|min_row|max_row|
+----+----+-------+-------+
|d |3 |4 |1 |
|a |1 |1 |3 |
|b |1 |1 |3 |
+----+----+-------+-------+
Please note that if the min/max row count are the same, they will be both filtered out.
You can use row_number function twice to order records by count, ascending and descending.
SELECT eco, eco_name, count
FROM (SELECT *,
row_number() over (order by count asc) as rna,
row_number() over (order by count desc) as rnd
FROM df)
WHERE rna = 1 or rnd = 1;
Note there's a tie for count = 1. If you care about it add a secondary sort to control which record is selected or maybe use rank instead to select all.
I have the following DF:
--------------------------------
|Id |Date |Value |cond |
|-------------------------------|
|1 |2022-08-03 | 100| 1 |
|1 |2022-08-04 | 200| 2 |
|1 |2022-08-05 | 150| 3 |
|1 |2022-08-06 | 300| 4 |
|1 |2022-08-07 | 400| 5 |
|1 |2022-08-08 | 150| 6 |
|1 |2022-08-09 | 500| 7 |
|1 |2022-08-10 | 150| 8 |
|1 |2022-08-11 | 150| 9 |
|1 |2022-08-12 | 700| 1 |
|1 |2022-08-13 | 800| 2 |
|1 |2022-08-14 | 150| 2 |
|1 |2022-08-15 | 300| 0 |
|1 |2022-08-16 | 200| 1 |
|1 |2022-08-17 | 150| 3 |
|1 |2022-08-18 | 150| 1 |
|1 |2022-08-19 | 250| 4 |
|1 |2022-08-20 | 150| 5 |
|1 |2022-08-21 | 400| 6 |
|2 |2022-08-03 | 100| 1 |
|2 |2022-08-04 | 200| 2 |
|2 |2022-08-05 | 150| 1 |
|2 |2022-08-06 | 300| 1 |
|2 |2022-08-07 | 400| 1 |
|2 |2022-08-08 | 150| 1 |
|2 |2022-08-09 | 125| 1 |
|2 |2022-08-10 | 150| 1 |
|2 |2022-08-11 | 150| 3 |
|2 |2022-08-12 | 170| 6 |
|2 |2022-08-13 | 150| 7 |
|2 |2022-08-14 | 150| 8 |
|2 |2022-08-15 | 300| 1 |
|2 |2022-08-16 | 150| 9 |
|2 |2022-08-17 | 150| 0 |
|2 |2022-08-18 | 400| 1 |
|2 |2022-08-19 | 150| 1 |
|2 |2022-08-20 | 500| 1 |
|2 |2022-08-21 | 150| 1 |
--------------------------------
And this one:
---------------------
|Date | cond |
|-------------------|
|2022-08-03 | 1 |
|2022-08-04 | 2 |
|2022-08-05 | 1 |
|2022-08-06 | 1 |
|2022-08-07 | 1 |
|2022-08-08 | 1 |
|2022-08-09 | 1 |
|2022-08-10 | 1 |
|2022-08-11 | 3 |
|2022-08-12 | 6 |
|2022-08-13 | 8 |
|2022-08-14 | 9 |
|2022-08-15 | 1 |
|2022-08-16 | 2 |
|2022-08-17 | 2 |
|2022-08-18 | 0 |
|2022-08-19 | 1 |
|2022-08-20 | 3 |
|2022-08-21 | 1 |
--------------------
My expected output is:
-------------------------------
|Id |Date |Avg |Count|
|-----------------------------|
|1 |2022-08-03 | 0| 0 |
|1 |2022-08-04 | 0| 0 |
|1 |2022-08-05 | 0| 0 |
|1 |2022-08-06 | 0| 0 |
|1 |2022-08-07 | 0| 0 |
|1 |2022-08-08 | 0| 0 |
|1 |2022-08-09 | 0| 0 |
|1 |2022-08-10 | 0| 0 |
|1 |2022-08-11 | 0| 0 |
|1 |2022-08-12 | 0| 0 |
|1 |2022-08-13 | 0| 0 |
|1 |2022-08-14 | 0| 0 |
|1 |2022-08-15 | 0| 0 |
|1 |2022-08-16 | 0| 0 |
|1 |2022-08-17 | 0| 0 |
|1 |2022-08-18 | 0| 0 |
|1 |2022-08-19 | 0| 0 |
|1 |2022-08-20 | 0| 0 |
|1 |2022-08-21 | 0| 0 |
|2 |2022-08-03 | 0| 0 |
|2 |2022-08-04 | 0| 0 |
|2 |2022-08-05 | 0| 1 |
|2 |2022-08-06 | 0| 2 |
|2 |2022-08-07 | 0| 3 |
|2 |2022-08-08 | 237,5| 4 |
|2 |2022-08-09 | 250| 4 |
|2 |2022-08-10 |243,75| 4 |
|2 |2022-08-11 | 0| 0 |
|2 |2022-08-12 | 0| 0 |
|2 |2022-08-13 | 0| 0 |
|2 |2022-08-14 | 0| 0 |
|2 |2022-08-15 |206,25| 4 |
|2 |2022-08-16 | 0| 0 |
|2 |2022-08-17 | 0| 0 |
|2 |2022-08-18 | 0| 0 |
|2 |2022-08-19 |243,75| 4 |
|2 |2022-08-20 | 0| 0 |
|2 |2022-08-21 | 337,5| 4 |
-------------------------------
The algorithm is:
Verify if Date and Cond are the same in the first and second DFs.
If the condition is true, I need to lookback on DF1 four days (D-1, D-2, D-3, D-4) based on Cond and calculate the Average(Avg) and count of this values. If I have more then 4 days I need to use the top 4 values to calculate the Avg and Count is going to be always 4 in this case.
Example situations based on the inputs:
Id = 1, Date = 2022-08-08
Count is 0 because the condition is false, then Avg is 0 too.
Id = 2, Date = 2022-08-08
Count is 4 because the condition is true, then I get values of 2022-08-07, 2022-08-06, 2022-08-05, 2022-08-03. I exclude 2022-08-04 because Cond value there is 2, and the Date I'm using as reference Cond is 1.
Id = 2, Date = 2022-08-07
Count is 3 because the condition is true, but I have only the 3 values before that date, so I can't calculate the Avg since I need four values, so in that case Avg is zero.
I tried to use window function, but with no success. I was able to achieve the output DF using SQL (Joins with Outter Apply). But spark doesn't have outter apply. So, my doubts are:
How to generate the output DF.
What is the best the way the generate the output DF.
MVCE to generate the input DFs in pyspark:
data_1=[
("1","2022-08-03",100,1),
("1","2022-08-04",200,2),
("1","2022-08-05",150,3),
("1","2022-08-06",300,4),
("1","2022-08-07",400,5),
("1","2022-08-08",150,6),
("1","2022-08-09",500,7),
("1","2022-08-10",150,8),
("1","2022-08-11",150,9),
("1","2022-08-12",700,1),
("1","2022-08-13",800,2),
("1","2022-08-14",150,2),
("1","2022-08-15",300,0),
("1","2022-08-16",200,1),
("1","2022-08-17",150,3),
("1","2022-08-18",150,1),
("1","2022-08-19",250,4),
("1","2022-08-20",150,5),
("1","2022-08-21",400,6),
("2","2022-08-03",100,1),
("2","2022-08-04",200,2),
("2","2022-08-05",150,1),
("2","2022-08-06",300,1),
("2","2022-08-07",400,1),
("2","2022-08-08",150,1),
("2","2022-08-09",125,1),
("2","2022-08-10",150,1),
("2","2022-08-11",150,3),
("2","2022-08-12",170,6),
("2","2022-08-13",150,7),
("2","2022-08-14",150,8),
("2","2022-08-15",300,1),
("2","2022-08-16",150,9),
("2","2022-08-17",150,0),
("2","2022-08-18",400,1),
("2","2022-08-19",150,1),
("2","2022-08-20",500,1),
("2","2022-08-21",150,1)
]
schema_1 = StructType([
StructField("Id", StringType(),True),
StructField("Date", DateType(),True),
StructField("Value", IntegerType(),True),
StructField("Cond", IntegerType(),True)
])
df_1 = spark.createDataFrame(data=data_1,schema=schema_1)
data_2 = [
("2022-08-03", 1),
("2022-08-04", 2),
("2022-08-05", 1),
("2022-08-06", 1),
("2022-08-07", 1),
("2022-08-08", 1),
("2022-08-09", 1),
("2022-08-10", 1),
("2022-08-11", 3),
("2022-08-12", 6),
("2022-08-13", 8),
("2022-08-14", 9),
("2022-08-15", 1),
("2022-08-16", 2),
("2022-08-17", 2),
("2022-08-18", 0),
("2022-08-19", 1),
("2022-08-20", 3),
("2022-08-21", 1)
]
schema_2 = StructType([
StructField("Date", DateType(),True),
StructField("Cond", IntegerType(),True)
])
df_2 = spark.createDataFrame(data=data_2,schema=schema_2)
UPDATE: I updated the question to be more clearly about the conditions to join the DFs!
Do a left join to get the dates you are interested in.
Then use pyspark.sql.window to get the values you need into a list and take size of this as Count.
Finally with the help of pyspark.sql.functions.aggregate get the Avg.
from pyspark.sql import functions as F, Window
# cast to date, and rename columns for later use
df_1 = df_1.withColumn("Date", F.col("Date").cast("date"))
df_2 = df_2.withColumn("Date", F.col("Date").cast("date"))
df_2 = df_2.withColumnRenamed("Date", "DateDf2")\
.withColumnRenamed("Cond", "CondDf2")
# left join
df = df_1.join(df_2, (df_1.Cond==df_2.CondDf2)&(df_1.Date==df_2.DateDf2), how='left')
windowSpec = Window.partitionBy("Id", "Cond").orderBy("Date")
# all the magic happens here!
df = (
# only start counting when "DateDf2" is not null, and put the values into a list
df.withColumn("value_list", F.when(F.isnull("DateDf2"), F.array()).otherwise(F.collect_list("Value").over(windowSpec.rowsBetween(-4, -1))))
.withColumn("Count", F.size("value_list"))
# use aggregate to sum up the list only if the size is 4! and divide by 4 to get average
.withColumn("Avg", F.when(F.col("count")==4, F.aggregate("value_list", F.lit(0), lambda acc,x: acc+x)/4).otherwise(F.lit(0)))
.select("Id", "Date", "Avg", "Count")
.orderBy("Id", "Date")
)
Output is:
+---+----------+------+-----+
|Id |Date |Avg |Count|
+---+----------+------+-----+
|1 |2022-08-03|0.0 |0 |
|1 |2022-08-04|0.0 |0 |
|1 |2022-08-05|0.0 |0 |
|1 |2022-08-06|0.0 |0 |
|1 |2022-08-07|0.0 |0 |
|1 |2022-08-08|0.0 |0 |
|1 |2022-08-09|0.0 |0 |
|1 |2022-08-10|0.0 |0 |
|1 |2022-08-11|0.0 |0 |
|1 |2022-08-12|0.0 |0 |
|1 |2022-08-13|0.0 |0 |
|1 |2022-08-14|0.0 |0 |
|1 |2022-08-15|0.0 |0 |
|1 |2022-08-16|0.0 |0 |
|1 |2022-08-17|0.0 |0 |
|1 |2022-08-18|0.0 |0 |
|1 |2022-08-19|0.0 |0 |
|1 |2022-08-20|0.0 |0 |
|1 |2022-08-21|0.0 |0 |
|2 |2022-08-03|0.0 |0 |
|2 |2022-08-04|0.0 |0 |
|2 |2022-08-05|0.0 |1 |
|2 |2022-08-06|0.0 |2 |
|2 |2022-08-07|0.0 |3 |
|2 |2022-08-08|237.5 |4 |
|2 |2022-08-09|250.0 |4 |
|2 |2022-08-10|243.75|4 |
|2 |2022-08-11|0.0 |0 |
|2 |2022-08-12|0.0 |0 |
|2 |2022-08-13|0.0 |0 |
|2 |2022-08-14|0.0 |0 |
|2 |2022-08-15|206.25|4 |
|2 |2022-08-16|0.0 |0 |
|2 |2022-08-17|0.0 |0 |
|2 |2022-08-18|0.0 |0 |
|2 |2022-08-19|243.75|4 |
|2 |2022-08-20|0.0 |0 |
|2 |2022-08-21|337.5 |4 |
+---+----------+------+-----+
here is the solution for the same
Solution:
from pyspark.sql import Window
import pyspark.sql.functions as F
df_1= df_1.withColumn("Date",F.col("Date").cast("timestamp"))
df_2= df_2.withColumn("Date",F.col("Date").cast("timestamp"))
window_spec = Window.partitionBy(["Id"]).orderBy("Date")
four_days_sld_wnd_exl_cuurent_row = Window.partitionBy(["Id"]).orderBy(["rnk"]).rangeBetween(-4, -1)
window_spec_count_cond_ = Window.partitionBy(["Id"]).orderBy(F.unix_timestamp("Date", 'yyyy-MM-dd') / 86400).rangeBetween(-4, -1)
agg_col_cond_ = (F.col("agg") ==0.0)
date_2_col_cond_ = (F.col("Date_2").isNull())
valid_4_days_agg_value =(F.when((~date_2_col_cond_) & (F.size(F.col("date_arrays_with_cond_1"))==4),
F.sum(F.col("Value")).over(four_days_sld_wnd_exl_cuurent_row)).otherwise(F.lit(0.0)))
count_cond_ = (F.when(~agg_col_cond_ & ~date_2_col_cond_,F.lit(4))
.when(agg_col_cond_ & date_2_col_cond_,F.lit(0))
.otherwise(F.size(F.collect_set(F.col("Date_2")).over(window_spec_count_cond_))))
df_jn = df_1.join(df_2,["Date","Cond"],"left")\
.select(df_1["*"],df_2["Date"].alias("Date_2")).orderBy("Id",df_1["Date"])
filter_having_cond_1=(F.col("Cond") == 1)
cond_columns_matching = (F.col("Date_2").isNull())
df_fnl_with_cond_val_1 = df_jn.filter(filter_having_cond_1)
df_fnl_with_cond_val_other=df_jn.filter(~filter_having_cond_1)\
.withColumn("agg",F.lit(0.0))\
.withColumn("count",F.lit(0))\
.drop("Date_2")
df_fnl_with_cond_val_1 = df_fnl_with_cond_val_1\
.withColumn("rnk",F.row_number().over(window_spec))\
.withColumn("date_arrays_with_cond_1", F.collect_set(F.col("Date")).over(four_days_sld_wnd_exl_cuurent_row))\
.withColumn("agg",valid_4_days_agg_value/4)\
.withColumn("count",count_cond_)\
.drop("date_arrays_with_cond_1","rnk","Date_2")
df_fnl = df_fnl_with_cond_val_1.unionByName(df_fnl_with_cond_val_other)
df_fnl.orderBy(["id","Date"]).show(50,0)
kindly upvote if you like my solution .
output
+---+-------------------+-----+----+------+-----+
|Id |Date |Value|Cond|agg |count|
+---+-------------------+-----+----+------+-----+
|1 |2022-08-03 00:00:00|100 |1 |0.0 |0 |
|1 |2022-08-04 00:00:00|200 |2 |0.0 |0 |
|1 |2022-08-05 00:00:00|150 |3 |0.0 |0 |
|1 |2022-08-06 00:00:00|300 |4 |0.0 |0 |
|1 |2022-08-07 00:00:00|400 |5 |0.0 |0 |
|1 |2022-08-08 00:00:00|150 |6 |0.0 |0 |
|1 |2022-08-09 00:00:00|500 |7 |0.0 |0 |
|1 |2022-08-10 00:00:00|150 |8 |0.0 |0 |
|1 |2022-08-11 00:00:00|150 |9 |0.0 |0 |
|1 |2022-08-12 00:00:00|700 |1 |0.0 |0 |
|1 |2022-08-13 00:00:00|800 |2 |0.0 |0 |
|1 |2022-08-14 00:00:00|150 |2 |0.0 |0 |
|1 |2022-08-15 00:00:00|300 |0 |0.0 |0 |
|1 |2022-08-16 00:00:00|200 |1 |0.0 |0 |
|1 |2022-08-17 00:00:00|150 |3 |0.0 |0 |
|1 |2022-08-18 00:00:00|150 |1 |0.0 |0 |
|1 |2022-08-19 00:00:00|250 |4 |0.0 |0 |
|1 |2022-08-20 00:00:00|150 |5 |0.0 |0 |
|1 |2022-08-21 00:00:00|400 |6 |0.0 |0 |
|2 |2022-08-03 00:00:00|100 |1 |0.0 |0 |
|2 |2022-08-04 00:00:00|200 |2 |0.0 |0 |
|2 |2022-08-05 00:00:00|150 |1 |0.0 |1 |
|2 |2022-08-06 00:00:00|300 |1 |0.0 |2 |
|2 |2022-08-07 00:00:00|400 |1 |0.0 |3 |
|2 |2022-08-08 00:00:00|150 |1 |237.5 |4 |
|2 |2022-08-09 00:00:00|125 |1 |250.0 |4 |
|2 |2022-08-10 00:00:00|150 |1 |243.75|4 |
|2 |2022-08-11 00:00:00|150 |3 |0.0 |0 |
|2 |2022-08-12 00:00:00|170 |6 |0.0 |0 |
|2 |2022-08-13 00:00:00|150 |7 |0.0 |0 |
|2 |2022-08-14 00:00:00|150 |8 |0.0 |0 |
|2 |2022-08-15 00:00:00|300 |1 |206.25|4 |
|2 |2022-08-16 00:00:00|150 |9 |0.0 |0 |
|2 |2022-08-17 00:00:00|150 |0 |0.0 |0 |
|2 |2022-08-18 00:00:00|400 |1 |0.0 |0 |
|2 |2022-08-19 00:00:00|150 |1 |243.75|4 |
|2 |2022-08-20 00:00:00|500 |1 |0.0 |0 |
|2 |2022-08-21 00:00:00|150 |1 |337.5 |4 |
+---+-------------------+-----+----+------+-----+
Suppose I have a pyspark dataframe with an id column and a time column (t) in seconds. For each id I'd like to group the rows so that each group has all entries that are within 5 seconds after the start time for that group. So for instance, if the table is:
+---+--+
|id |t |
+---+--+
|1 |0 |
|1 |1 |
|1 |3 |
|1 |8 |
|1 |14|
|1 |18|
|2 |0 |
|2 |20|
|2 |21|
|2 |50|
+---+--+
Then the result should be:
+---+--+---------+-------------+-------+
|id |t |subgroup |window_start |offset |
+---+--+---------+-------------+-------+
|1 |0 |1 |0 |0 |
|1 |1 |1 |0 |1 |
|1 |3 |1 |0 |3 |
|1 |8 |2 |8 |0 |
|1 |14|3 |14 |0 |
|1 |18|3 |14 |4 |
|2 |0 |1 |0 |0 |
|2 |20|2 |20 |0 |
|2 |21|2 |20 |1 |
|2 |50|3 |50 |0 |
+---+--+---------+-------------+-------+
I don't need the subgroup numbers to be consecutive. I'm ok with solutions using custom UDAF in Scala as long as it is efficient.
Computing (cumsum(t)-(cumsum(t)%5))/5 within each group can be used to identify the first window, but not the ones beyond that. Essentially the problem is that after the first window is found, the cumulative sum needs to reset to 0. I could operate recursively using this cumulative sum approach, but that is too inefficient on a large dataset.
The following works and is more efficient than recursively calling cumsum, but it is still so slow as to be useless on large dataframes.
d = [[int(x[0]),float(x[1])] for x in [[1,0],[1,1],[1,4],[1,7],[1,14],[1,18],[2,5],[2,20],[2,21],[3,0],[3,1],[3,1.5],[3,2],[3,3.5],[3,4],[3,6],[3,6.5],[3,7],[3,11],[3,14],[3,18],[3,20],[3,24],[4,0],[4,1],[4,2],[4,6],[4,7]]]
schema = pyspark.sql.types.StructType(
[
pyspark.sql.types.StructField('id',pyspark.sql.types.LongType(),False),
pyspark.sql.types.StructField('t',pyspark.sql.types.DoubleType(),False)
]
)
df = spark.createDataFrame(
[pyspark.sql.Row(*x) for x in d],
schema
)
def getSubgroup(ts):
result = []
total = 0
ts = sorted(ts)
tdiffs = numpy.array(ts)
tdiffs = tdiffs[1:]-tdiffs[:-1]
tdiffs = numpy.concatenate([[0],tdiffs])
subgroup = 0
for k in range(len(tdiffs)):
t = ts[k]
tdiff = tdiffs[k]
total = total+tdiff
if total >= 5:
total = 0
subgroup += 1
result.append([t,float(subgroup)])
return result
getSubgroupUDF = pyspark.sql.functions.udf(getSubgroup,pyspark.sql.types.ArrayType(pyspark.sql.types.ArrayType(pyspark.sql.types.DoubleType())))
subgroups = df.select('id','t').distinct().groupBy(
'id'
).agg(
pyspark.sql.functions.collect_list('t').alias('ts')
).withColumn(
't_and_subgroup',
pyspark.sql.functions.explode(getSubgroupUDF('ts'))
).withColumn(
't',
pyspark.sql.functions.col('t_and_subgroup').getItem(0)
).withColumn(
'subgroup',
pyspark.sql.functions.col('t_and_subgroup').getItem(1).cast(pyspark.sql.types.IntegerType())
).drop(
't_and_subgroup','ts'
)
df = df.join(
subgroups,
on=['id','t'],
how='inner'
)
df.orderBy(
pyspark.sql.functions.asc('id'),pyspark.sql.functions.asc('t')
).show()
The subgroup column is equivalent to partitioning by id, window_start so maybe you don't need to create it.
To create window_start , I think this does the job :
.withColumn("window_start", min("t").over(Window.partitionBy("id").orderBy(asc("t")).rangeBetween(0, 5)))
I'm not 100% sure about the behavior of rangeBetween.
To create offset it's just .withColumn("offset", col("t") - col("window_start"))
Let me know how it goes
I have an input dataframe of the format
+---------------------------------+
|name| values |score |row_number|
+---------------------------------+
|A |1000 |0 |1 |
|B |947 |0 |2 |
|C |923 |1 |3 |
|D |900 |2 |4 |
|E |850 |3 |5 |
|F |800 |1 |6 |
+---------------------------------+
I need to get sum(values) when score > 0 and row_number < K (i,e) SUM of all values when score > 0 for the top k values in the dataframe.
I am able to achieve this by running the following query for top 100 values
val top_100_data = df.select(
count(when(col("score") > 0 and col("row_number")<=100, col("values"))).alias("count_100"),
sum(when(col("score") > 0 and col("row_number")<=100, col("values"))).alias("sum_filtered_100"),
sum(when(col("row_number") <=100, col(values))).alias("total_sum_100")
)
However, I need to fetch data for top 100,200,300......2500. meaning I would need to run this query 25 times and finally union 25 dataframes.
I'm new to spark and still figuring lots of things out. What would be the best approach to solve this problem?
Thanks!!
You can create an Array of limits as
val topFilters = Array(100, 200, 300) // you can add more
Then you can loop through the topFilters array and create the dataframe you require. I suggest you to use join rather than union as join will give you separate columns and unions will give you separate rows. You can do the following
Given your dataframe as
+----+------+-----+----------+
|name|values|score|row_number|
+----+------+-----+----------+
|A |1000 |0 |1 |
|B |947 |0 |2 |
|C |923 |1 |3 |
|D |900 |2 |200 |
|E |850 |3 |150 |
|F |800 |1 |250 |
+----+------+-----+----------+
You can do by using the topFilters array defined above as
import sqlContext.implicits._
import org.apache.spark.sql.functions._
var finalDF : DataFrame = Seq("1").toDF("rowNum")
for(k <- topFilters) {
val top_100_data = df.select(lit("1").as("rowNum"), sum(when(col("score") > 0 && col("row_number") < k, col("values"))).alias(s"total_sum_$k"))
finalDF = finalDF.join(top_100_data, Seq("rowNum"))
}
finalDF.show(false)
Which should give you final dataframe as
+------+-------------+-------------+-------------+
|rowNum|total_sum_100|total_sum_200|total_sum_300|
+------+-------------+-------------+-------------+
|1 |923 |1773 |3473 |
+------+-------------+-------------+-------------+
You can do the same for your 25 limits that you have.
If you intend to use union, then the idea is similar to above.
I hope the answer is helpful
Updated
If you require union then you can apply following logic with the same limit array defined above
var finalDF : DataFrame = Seq((0, 0, 0, 0)).toDF("limit", "count", "sum_filtered", "total_sum")
for(k <- topFilters) {
val top_100_data = df.select(lit(k).as("limit"), count(when(col("score") > 0 and col("row_number")<=k, col("values"))).alias("count"),
sum(when(col("score") > 0 and col("row_number")<=k, col("values"))).alias("sum_filtered"),
sum(when(col("row_number") <=k, col("values"))).alias("total_sum"))
finalDF = finalDF.union(top_100_data)
}
finalDF.filter(col("limit") =!= 0).show(false)
which should give you
+-----+-----+------------+---------+
|limit|count|sum_filtered|total_sum|
+-----+-----+------------+---------+
|100 |1 |923 |2870 |
|200 |3 |2673 |4620 |
|300 |4 |3473 |5420 |
+-----+-----+------------+---------+