Spark SQL joining multiple tables design - apache-spark

I am developing a Spark SQL analytics solutions using set of tables. Suppose there are 5 tables which i need to building my solution and finally i am creating one output table.
Here is my flow
dataframe1 = table1 join table2
dataframe2 = dataframe1 join table3
dataframe3 = datamframe2 + filter + agg
dataframe4 = dataframe3 join table4 join table 5
// finally
dataframe4.saveAsTable
When I save final dataframe that's when all the above dataframe is evaluated.
Is my approach is good? or
Do i need to cache/persist intermediate dataframes?

This is a very generic question and it is hard to provide a definitive answer.
Depending on the size of tables you would want to do broadcast hint for any of tables that are relatively small.
You can do this via
table_i.join(broadcast(table_j), ....)
This behaviour depends on the value in:
Now broadcast hint will be honoured only if Spark is able to evaluate the value of the table so you might need to cache().
Another option is via Spark checkpoints that can help to truncate local plan for optimisation (also this allows you to resume jobs from checkpoint location, it is similar to writing to HDFS but with some overhead).
In case of broadcasting few houndres of Mb tables, you might need to increase your kryo buffer:
--conf spark.kryoserializer.buffer.max=1g
It also depends which join types you will use.
You would probably want to do filter and aggregagtion as early as possible since it will reduce the join surface.
There are many other considerations to be consider in order to properly optimise this. In case of power law distribution of join keys in any of the joins you would need to do salting and explode smaller table.

In your case, in principle, there is not really a cache or persist required Why?
As there are no reuse paths evident (for other Actions or other Transformations within the same Action), it is all sequential.
Also, lazy evaluation and Catalyst.
Try the .explain and see how Spark will process.
However, due to memory eviction possibilities on the Cluster, there may be the need to re-compute on a Worker. There are various settings that you could apply via .cache and .persist, but Spark handles memory and disk spills without explicit .cache or .persist. See https://sparkbyexamples.com/spark/spark-difference-between-cache-and-persist/
Also, using .cache can affect performance. So use .explain. See here an excellent posting: Spark: Explicit caching can interfere with Catalyst optimizer's ability to optimize some queries?
So, each case is different but yours seems Ok to answer as I have. In summary: An RDD or DF that is not cached, nor check-pointed, is re-evaluated again each time an Action is invoked on that RDD or DF or if re-accessed within the current Action and no skipped stage situation applies. In your case no issue. Doing otherwise would slow your App down in fact.

Related

Suggestion for multiple joins in spark

Recently I got a requirement to perform combination joins.
I have to perform around 30 to 36 joins in Spark.
It was consuming more time to build the execution plan. So I cached the execution plan in intermediate stages using df.localCheckpoint().
Is this a good way to do? Any thoughts, please share.
Yes, it is fine.
This is mostly discussed for iterative ML algorithms, but can be equally applied for a Spark App with many steps - e.g. joins.
Quoting from https://medium.com/#adrianchang/apache-spark-checkpointing-ebd2ec065371:
Spark programs take a huge performance hit when fault tolerance occurs
as the entire set of transformations to a DataFrame or RDD have to be
recomputed when fault tolerance occurs or for each additional
transformation that is applied on top of an RDD or DataFrame.
localCheckpoint() is not "reliable".
Caching is definitely a strategy to optimize your performance. In general, given that your data size and resource of your spark application remains unchanged, there are three points that need to be considered when you want to optimize your joining operation:
Data skewness: In most of the time, when I'm trying to find out the reason why the joining takes a lot of time, data skewness is always be one of the reasons. In fact, not only the joining operation, any transformation need a even data distribution so that you won't have a skewed partition that have lots of data and wait the single task in single partition. Make sure your data are well distributed.
Data broadcasting: When we do the joining operation, data shuffling is inevitable. In some case, we use a relatively small dataframe as a reference to filter the data in a very big dataframe. In this case, it's a very expensive operation to shuffle the dataframe. Instead, we can use the dataframe broadcasting to broadcast your small dataframe to every single node and prevent the costly shuffling.
Keep your joining data as lean as possible: like what I mentioned in point 2, data shuffling is inevitable when you do the joining operation. Therefore, please keep your dataframe as lean as possible, which means remove the rows / columns if it's unnecessary to reduce the size of data that need to be moved across the network during the data shuffling.

How to spark partitionBy/bucketBy correctly?

Q1. Will adhoc (dynamic) repartition of the data a line before a join help to avoid shuffling or will the shuffling happen anyway at the repartition and there is no way to escape it?
Q2. should I repartition/partitionBy/bucketBy? what is the right approach if I will join according to column day and user_id in the future? (I am saving the results as hive tables with .write.saveAsTable). I guess to partition by day and bucket by user_id but that seems to create thousands of files (see Why is Spark saveAsTable with bucketBy creating thousands of files?)
Some 'guidance' off the top of my head, noting that title and body of text differ to a degree:
Question 1:
A JOIN will do any (hash) partitioning / repartitioning required automatically - if needed and if not using a Broadcast JOIN. You may
set the number of partitions for shuffling or use the default - 200.
There are more parties (DF's) to consider.
repartition is a transformation, so any up-front repartition may not be executed at all due to Catalyst optimization - see the physical plan generated from the .explain. That's the deal with lazy
evaluation - determining if something is necessary upon Action
invocation.
Question 2:
If you have a use case to JOIN certain input / output regularly, then using Spark's bucketBy is a good approach. It obviates shuffling. The
databricks docs show this clearly.
A Spark schema using bucketBy is NOT compatible with Hive. so these remain Spark only tables, unless this changed recently.
Using Hive partitioning as you state depend on push-down logic, partition pruning etc. It should work as well but you may have have
different number of partitions inside Spark framework after the read.
It's a bit more complicated than saying I have N partitions so I will
get N partitions on the initial read.

When should we go for Spark-sql and when should we go for Spark RDD

On which scenario we should prefer spark RDD to write a solution and on which scenario we should choose to go for spark-sql. I know spark-sql gives better performance and it works best with structure and semistructure data. But what else factors are there that we need to take into consideration while choosing betweeen spark Rdd and spark-sql.
I don't see much reasons to still use RDDs.
Assuming you are using JVM based language, you can use DataSet that is the mix of SparkSQL+RDD (DataFrame == DataSet[Row]), according to spark documentation:
Dataset is a new interface added in Spark 1.6 that provides the benefits of RDDs (strong typing, ability to use powerful lambda functions) with the benefits of Spark SQL’s optimized execution engine.
The problem is python is not support DataSet so, you will use RDD and lose spark-sql optimization when you work with non-structed data.
I found using DFs easier to use than DSs - the latter are still subject to development imho. The comment on pyspark indeed still relevant.
RDDs still handy for zipWithIndex to put asc, contiguous sequence numbers on items.
DFs / DSs have a columnar store and have a better Catalyst (Optimizer) support.
Also, may things with RDDs are painful, like a JOIN requiring a key, value and multi-step join if needing to JOIN more than 2 tables. They are legacy. Problem is the internet is full of legacy and thus RDD jazz.
RDD
RDD is a collection of data across the clusters and it handles both unstructured and structured data. It's typically a function part of handling data.
DF
Data frames are basically two dimensional array of objects defining the data in a rows and columns. It's similar to relations tables in the database. Data frame handles only the structured data.

Spark Dataframe needs to be repartition after filter like RDD?

According so many good resources, it is advisable to re-partition a RDD after filter operation. since, there is a possibility that most of the partitions are now empty.
I have a doubt that in case of Data Frames has this been handled in current versions or do we still need to repartition it after a filter operation?
I have a doubt that in case of Data Frames has this been handled in current versions or do we still need to repartition it after a filter operation?
If you ask if Spark automatically repartitions data the answer is negative (and I hope it won't change in the future)
According so many good resources, it is advisable to re-partition a RDD after filter operation. since, there is a possibility that most of the partitions are now empty.
This really depends on two factors:
How selective is the filter (what is the expected fraction of the records preserved).
What is the distribution of data, in respect to predicate, prior to filter.
Unless you expect that predicate prunes majority of data or prior distribution will leave significant fraction of partitions empty, costs of repartitioning usually outweigh potential benefits, so the main reason to call repartition is to limit the number of the output files.
Spark does not automatically repartition data. It would be a good idea to repartition the data after filtering if you need to do operations such as join and aggregate. Based on your needs you should either use repartition or coalesce. Typically coalesce is preferable since it tries to group data together without shuffling, therefore it only decreases the # of partitions. (good link for understanding coalesce and repartition)
There aren't huge performance boost if you don't do any heavy computation after your filtering operation. Keep in mind that repartition by itself could also be expensive. You must know your data to make that decision
I am assuming that this is your question.
Shall I run a filter operation before repartition or after repartition?
Based on this assumption, a filter will always try to find records matching some conditions. So, the resultant data frame/RDD is always either less than or equal to the previous data frame/RDD. In most cases, the resultant set is less than the previous one.
Whereas repartition is one of the most expensive operations because it does a shuffle. Always remember whenever we are performing a repartition the less the data is in memory the better the performance we can get out of it.
I don't even have to talk more about how Spark handles it etc, in
general filter before repartition is good for performance!
For example, catalyst optimizer itself uses before and after filter to improve performance.
Blog Link:
For example, Spark knows how and when to do things like combine
filters, or move filters before joins. Spark 2.0 even allows you to
define, add, and test out your own additional optimization rules at
runtime. 1[2]

Consistent view of data in SPARK Data Frame

Considering lazy evaluation, actions, etc. my understanding is from others, that:
if I make repeated access to a dataframe,
that was built from, say, a Hive table,
that (the Hive table) is subject to mutation,
then this changed data will show up on every dataframe operation that is issued subsequently.
How can I get a consistent dataframe then a la ORACLE's read consistency model, other than copying to a separate non-mutable Hive table?
I am assuming that a TempView will solve the problem, or is that not so? Actually I think not. Performance issues.
Ideally I would like the dataframe will all records persisted, but may be that is not how it works with the lazy protocol.
How can I get a consistent dataframe then a la ORACLE's read consistency model, other than copying to a separate non-mutable Hive table?
There is simply no such option.
Naively one could suggest cache and forced evaluation:
val df: DataFrame = ???
df.cache // Default StorageLevel - MEMORY_AND_DISK
df.foreach(_ => ())
but it just doesn't provide required guarantees, especially in case of node failures. You could increase reliability by setting StorageLevel to MEMORY_AND_DISK_2, but it still can result in silent correctness errors.
So to be blunt - Spark is not a database, don't try to treat it like a one. if you already use Hive, and mutable state, then skip Spark and use Hive's ACID and transaction options.

Resources