What is the difference between tcp_max_syn_backlog and somaxconn? - linux

I have been reading some articles about TCP implementation on Linux and I got confused, what is the difference between net.ipv4.tcp_max_syn_backlog and net.core.somaxconn and the backlog passed as parameter to listen() system call, and what is the relation between them.
P.S. I want explanation for kernel 4.15 because I found that there are some differences between oldest and newer kernels on this subject.

sysctl is an API. So you can just read the Linux kernel documentation for appropriate version:
tcp_max_syn_backlog - INTEGER
Maximal number of remembered connection requests, which have not
received an acknowledgment from connecting client.
The minimal value is 128 for low memory machines, and it will
increase in proportion to the memory of machine.
If server suffers from overload, try increasing this number.
somaxconn - INTEGER
Limit of socket listen() backlog, known in userspace as SOMAXCONN.
Defaults to 128. See also tcp_max_syn_backlog for additional tuning
for TCP sockets.
Let's consider a TCP-handshake.. tcp_max_syn_backlog represents the maximal number of connections in SYN_RECV queue. I.e. when your server received SYN, sent SYN-ACK and haven't received ACK yet. This is a separate queue of so-called "request sockets" - reqsk in code (i.e. not fully-fledged sockets, "request sockets" occupy less memory. In this state we can save some memory and not yet allocate a full socket because the full connection may not be at all in the future if ACK will not arrive). The value of this queue is affected (see this post) by listen()'s backlog argument and limited by tcp_max_syn_backlog in kernel.
somaxconn represents the maximal size of ESTABLISHED queue. This is another queue.
Recall the previously mentioned SYN_RECV queue - your server is waiting for ACK from client. When the ACK arrives the kernel roughly speaking makes the big full-fledged socket from "request socket" and moves it to ESTABLISHED queue. Then you can do accept() on this socket. This queue is also affected by listen()'s backlog argument and limited by somaxconn in kernel.
Useful links: 1, 2.

Related

TCP backlog works not as expected in Linux [duplicate]

I have the following problem:
I have sockfd = socket(AF_INET, SOCK_STREAM, 0)
After I set up and bind the socket (let's say with sockfd.sin_port = htons(666)), I immediately do:
listen(sockfd, 3);
sleep(50); // for test purposes
I'm sleeping for 50 seconds to test the backlog argument, which seems to be ignored because I can establish a connection* more than 3 times on port 666.
*: What I mean is that I get a syn/ack for each Nth SYN (n>3) sent from the client and placed in the listen queue, instead of being dropped. What could be wrong? I've read the man pages of listen(2) and tcp(7) and found:
The behavior of the backlog argument on TCP sockets changed with Linux 2.2.
Now it specifies the queue length for completely established sockets waiting to be accepted, instead of the number of incomplete connection requests. The maximum length of the queue for incomplete sockets can
be set using
/proc/sys/net/ipv4/tcp_max_syn_backlog.
When syncookies are enabled there is
no logical maximum length and this
setting is ignored. See tcp(7) for
more
information.
, but even with sysctl -w sys.net.ipv4.tcp_max_syn_backlog=2 and sysctl -w net.ipv4.tcp_syncookies=0, I still get the same results! I must be missing something or completely missunderstand listen()'s backlog purpose.
The backlog argument to listen() is only advisory.
POSIX says:
The backlog argument provides a hint
to the implementation which the
implementation shall use to limit the
number of outstanding connections in
the socket's listen queue.
Current versions of the Linux kernel round it up to the next highest power of two, with a minimum of 16. The revelant code is in reqsk_queue_alloc().
Different operating systems provide different numbers of queued connections with different backlog numbers. FreeBSD appears to be one of the few OSes that actually has a 1-to-1 mapping. (source: http://books.google.com/books?id=ptSC4LpwGA0C&lpg=PA108&ots=Kq9FQogkTr&dq=berkeley%20listen%20backlog%20ack&pg=PA108#v=onepage&q=berkeley%20listen%20backlog%20ack&f=false )

TCP Sockets send buffer size efficiency

When working with WinSock or POSIX TCP sockets (in C/C++, so no extra Java/Python/etc. wrapping), is there any efficiency pro/cons to building up a larger buffer (e.g. say upto 4KB) in user space then making as few calls to send as possible to send that buffer vs making multiple smaller calls directly with the bits of data (say 1-1000 bytes), other the the fact that for non-blocking/asynchronous sockets the single buffer is potentially easier for me to manage.
I know with recv small buffers are not recommended, but I couldn't find anything for sending.
e.g. does each send call on common platforms go to into kernel mode? Could a 1 byte send actually result in a 1 byte packet being transmitted under normal conditions?
As explained on TCP Illustrated Vol I, by Richard Stevens, TCP divides the send buffer in near to optimum segments to fit in the maximum packet size along the path to the other TCP peer. That means that it will never try to send segments that will be fragmented by ip along the route to destination (when a packet is fragmented at some ip router, it sends back an IP fragmentation ICMP packet and TCP will take it into account to reduce the MSS for this connection). That said, there is no need for larger buffer than the maximum packet size of the link level interfaces you'll have along the path. Having one, let's say, twice or thrice longer, makes you sure that TCP will not stop sending as soon as it receives some acknowledge of remote peer, because of not having its buffer filled with data.
Think that the normal interface type is ethernet and it has a maximum packet size of 1500 bytes, so normally TCP doesn't send a segment greater than this size. And it normally has an internall buffer of 8Kb per connection, so there's little sense in adding buffer size at kernel space for that (if this is the only reason to have a buffer in kernel space).
Of course, there are other factors that force you to use a buffer in user space (for example, you want to store the data to send to your peer process somewhere, as there's only 8Kb data in kernel space to buffer, and you will need more space to be able to do some other processes) An example: ircd (the Internet Relay Chat daemon) uses write buffers of up to 100Kb before dropping a connection because the other side is not receiving/acknowledging that data. If you only write(2) to the connection, you'll be put on wait once the kernel buffer is full, and perhaps that's not what you want.
The reason to have buffers in user space is because TCP makes also flow control, so when it's not able to send data, it has to be put somewhere to cope with it. You'll have to decide if you need your process to save that data up to a limit or you can block sending data until the receiver is able to receive again. The buffer size in kernel space is limited and normally out of control for the user/developer. Buffer size in user space is limited only by the resources allowable to it.
Receiving/sending small chunks of data in a TCP connection is not recommendable because of the increased overhead of TCP handshaking and headers impose. Suppose a telnet connection in which for each character sent, a header for TCP and other for IP is added (20 bytes min for TCP, 20 bytes min for IP, 14 bytes for ethernet frame and 4 for the ethernet CRC) makes up to 60 bytes+ to transmit only one character. And normally each tcp segment is acknowledged individually, so that makes a full roundtrip time to send a segment and get the acknowledge (just to be able to free the buffer resources and assume this character as transmitted)
So, finally, what's the limit? It depends on your application. If you can cope with the kernel resources available and don't need more buffers, you can pass without havin buffers in user space. If you need more, you'll need to implement buffers and be able to feed the kernel buffer with your buffer data when available.
Yes, a one byte send can - under very normal conditions - result in sending a TCP packet with only a single byte payload. Send coalescing in TCP is normally done by use of Nagle's algorithm. With Nagle's algorithm, sending data is delayed iff there is data that has already been sent but not yet acknowledged.
Conversely data will be sent immediately if there is no unacknowledged data. Which is usually true in the following situations:
The connection has just been opened
The connection has been idle for some time
The connection only received data but nothing was sent for some time
In that case the first send call that your application performs will cause a packet to be sent immediately, no matter how small. So starting communication with two or more small sends is usually a bad idea because it increases overhead and delay.
The infamous "send send recv" pattern can also cause really large delays (e.g. on Windows typically 200ms). This happens if the local TCP stack uses Nagle's algorithm (which will usually delay the second send) and the remote stack uses delayed acknowledgment (which can delay the acknowledgment of the first packet).
Since most TCP stack implementations use both, Nagle's algorithm and delayed acknowledgment, this pattern should best be avoided.

How to programmatically increase the per-socket buffer for UDP sockets on LInux?

I'm trying to understand the correct way to increase the socket buffer size on Linux for our streaming network application. The application receives variable bitrate data streamed to it on a number of UDP sockets. The volume of data is substantially higher at the start of the stream and I've used:
# sar -n UDP 1 200
to show that the UDP stack is discarding packets and
# ss -un -pa
to show that each socket Recv-Q length grows to the nearly the limit (124928. from sysctl net.core.rmem_default) before packets are discarded. This implies that the application simply can't keep up with the start of the stream. After discarding enough initial packets the data rate slows down and the application catches up. Recv-Q trends towards 0 and remains there for the duration.
I'm able to address the packet loss by substantially increasing the rmem_default value which increases the socket buffer size and gives the application time to recover from the large initial bursts. My understanding is that this changes the default allocation for all sockets on the system. I'd rather just increase the allocation for the specific UDP sockets and not modify the global default.
My initial strategy was to modify rmem_max and to use setsockopt(SO_RCVBUF) on each individual socket. However, this question makes me concerned about disabling Linux autotuning for all sockets and not just UDP.
udp(7) describes the udp_mem setting but I'm confused how these values interact with the rmem_default and rmem_max values. The language it uses is "all sockets", so my suspicion is that these settings apply to the complete UDP stack and not individual UDP sockets.
Is udp_rmem_min the setting I'm looking for? It seems to apply to individual sockets but global to all UDP sockets on the system.
Is there a way to safely increase the socket buffer length for the specific UDP ports used in my application without modifying any global settings?
Thanks.
Jim Gettys is armed and coming for you. Don't go to sleep.
The solution to network packet floods is almost never to increase buffering. Why is your protocol's queueing strategy not backing off? Why can't you just use TCP if you're trying to send so much data in a stream (which is what TCP was designed for).

How do I get amount of queued data for UDP socket?

To see how well I'm doing in processing incoming data, I'd like to measure the queue length at my TCP and UDP sockets.
I know that I can get the queue size via SO_RCVBUF socket option, and that ioctl(<sockfd>, SIOCINQ, &<some_int>) tells me the information for TCP sockets. But for UDP the SIOCINQ/FIONREAD ioctl returns only the size of next pending datagram. Is there a way how to get queue size for UDP, without having to parse system tables such as /proc/net/udp?
FWIW, I did some experiments to map out the behavior of FIONREAD on different platforms.
Platforms where FIONREAD returns all the data pending in a SOCK_DGRAM socket:
Mac OS X, NetBSD, FreeBSD, Solaris, HP-UX, AIX, Windows
Platforms where FIONREAD returns only the bytes for the first pending datagram:
Linux
It might also be worth noting that some implementations include headers or other overhead bytes in the count, while others only count the payload bytes. Linux appears to return the payload size, not including IP headers.
As ldx mentioned, it is not supported through ioctl or getsockopt.
It seems to me that the current implementation of SIOCINQ was aimed to determine how much buffer is needed to read the entire waiting buffer (but I guess it is not so useful for that, as it can change between the read of it to the actual buffer read).
There are many other telemetries which are not supported though such system calls, I guess there is no real need in normal production usage.
You can check the drops/errors through "netstat -su" , or better using SNMP (udpInErrors) if you just want to monitor the machine state.
BTW: You always have the option to hack in the Kernel code and add this value (or others).

Application control of TCP retransmission on Linux

For the impatient:
How to change the value of /proc/sys/net/ipv4/tcp_retries2 for a single connection in Linux, using setsockopt(), ioctl() or such, or is it possible?
Longer decription:
I'm developing an application that uses long polling HTTP requests. On the server side, it needs to be known when the client has closed the connection. The accuracy is not critical, but it certainly cannot be 15 minutes. Closer to a minute would do fine.
For those not familiar with the concept, a long polling HTTP request works like this:
The client sends a request
The server responds with HTTP headers, but leaves the response open. Chunked transfer encoding is used, allowing the server to sends bits of data as they become available.
When all the data is sent, the server sends a "closing chunk" to signal that the response is complete.
In my application, the server sends "heartbeats" to the client every now an then (30 seconds by default). A heartbeat is just a newline character that is sent as a response chunk. This is meant to keep the line busy so that we notify the connection loss.
There's no problem when the client shuts down correctly. But when it's shut down with force (the client machine loses power, for example), a TCP reset is not sent. In this case, the server sends a heartbeat, which the client doesn't ACK. After this, the server keeps retransmitting the packet for roughly 15 minutes after giving up and reporting the failure to the application layer (our HTTP server). And 15 minutes is too long a wait in my case.
I can control the retransmission time by writing to the following files in /proc/sys/net/ipv4/:
tcp_retries1 - INTEGER
This value influences the time, after which TCP decides, that
something is wrong due to unacknowledged RTO retransmissions,
and reports this suspicion to the network layer.
See tcp_retries2 for more details.
RFC 1122 recommends at least 3 retransmissions, which is the
default.
tcp_retries2 - INTEGER
This value influences the timeout of an alive TCP connection,
when RTO retransmissions remain unacknowledged.
Given a value of N, a hypothetical TCP connection following
exponential backoff with an initial RTO of TCP_RTO_MIN would
retransmit N times before killing the connection at the (N+1)th RTO.
The default value of 15 yields a hypothetical timeout of 924.6
seconds and is a lower bound for the effective timeout.
TCP will effectively time out at the first RTO which exceeds the
hypothetical timeout.
RFC 1122 recommends at least 100 seconds for the timeout,
which corresponds to a value of at least 8.
The default value of tcp_retries2 is indeed 8, and my experience of 15 minutes (900 seconds) of retransmission is in line with the kernel documentation quoted above.
If I change the value of tcp_retries2 to 5 for example, the connection dies much more quicker. But setting it like this affects all the connections in the system, and I'd really like to set it for this one long polling connection only.
A quote from RFC 1122:
4.2.3.5 TCP Connection Failures
Excessive retransmission of the same segment by TCP
indicates some failure of the remote host or the Internet
path. This failure may be of short or long duration. The
following procedure MUST be used to handle excessive
retransmissions of data segments [IP:11]:
(a) There are two thresholds R1 and R2 measuring the amount
of retransmission that has occurred for the same
segment. R1 and R2 might be measured in time units or
as a count of retransmissions.
(b) When the number of transmissions of the same segment
reaches or exceeds threshold R1, pass negative advice
(see Section 3.3.1.4) to the IP layer, to trigger
dead-gateway diagnosis.
(c) When the number of transmissions of the same segment
reaches a threshold R2 greater than R1, close the
connection.
(d) An application MUST be able to set the value for R2 for
a particular connection. For example, an interactive
application might set R2 to "infinity," giving the user
control over when to disconnect.
(e) TCP SHOULD inform the application of the delivery
problem (unless such information has been disabled by
the application; see Section 4.2.4.1), when R1 is
reached and before R2. This will allow a remote login
(User Telnet) application program to inform the user,
for example.
It seems to me that tcp_retries1 and tcp_retries2 in Linux correspond to R1 and R2 in the RFC. The RFC clearly states (in item d) that a conforming implementation MUST allow setting the value of R2, but I have found no way to do it using setsockopt(), ioctl() or such.
Another option would be to get a notification when R1 is exceeded (item e). This is not as good as setting R2, though, as I think R1 is hit pretty soon (in a few seconds), and the value of R1 cannot be set per connection, or at least the RFC doesn't require it.
Looks like this was added in Kernel 2.6.37.
Commit diff from kernel Git and Excerpt from change log below;
commit
dca43c75e7e545694a9dd6288553f55c53e2a3a3
Author: Jerry Chu
Date: Fri Aug 27 19:13:28 2010 +0000
tcp: Add TCP_USER_TIMEOUT socket option.
This patch provides a "user timeout" support as described in RFC793. The
socket option is also needed for the the local half of RFC5482 "TCP User
Timeout Option".
TCP_USER_TIMEOUT is a TCP level socket option that takes an unsigned int,
when > 0, to specify the maximum amount of time in ms that transmitted
data may remain unacknowledged before TCP will forcefully close the
corresponding connection and return ETIMEDOUT to the application. If
0 is given, TCP will continue to use the system default.
Increasing the user timeouts allows a TCP connection to survive extended
periods without end-to-end connectivity. Decreasing the user timeouts
allows applications to "fail fast" if so desired. Otherwise it may take
upto 20 minutes with the current system defaults in a normal WAN
environment.
The socket option can be made during any state of a TCP connection, but
is only effective during the synchronized states of a connection
(ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, or LAST-ACK).
Moreover, when used with the TCP keepalive (SO_KEEPALIVE) option,
TCP_USER_TIMEOUT will overtake keepalive to determine when to close a
connection due to keepalive failure.
The option does not change in anyway when TCP retransmits a packet, nor
when a keepalive probe will be sent.
This option, like many others, will be inherited by an acceptor from its
listener.
Signed-off-by: H.K. Jerry Chu <hkchu#google.com>
Signed-off-by: David S. Miller <davem#davemloft.net>
I suggest that if the TCP_USER_TIMEOUT socket option described by Kimvais is available, you use that. On older kernels where that socket option is not present, you could repeatedly call the SIOCOUTQ ioctl() to determine the size of the socket send queue - if the send queue doesn't decrease over your timeout period, that indicates that no ACKs have been received and you can close the socket.
After some thinking (and googling), I came to the conclusion that you can't change tcp_retries1 and tcp_retries2 value for a single socket unless you apply some sort of patch to the kernel. Is that feasible for you?
Otherways, you could use TCP_KEEPALIVE socket option whose purpose is to check if a connection is still active (it seems to me that that's exactly what you are trying to achieve, so it has sense). Pay attention to the fact that you need to tweak its default parameter a little, because the default is to disconnect after about 2 hrs!!!
This is for my understanding.
tcp_retries2 is the number of retransmission that is permitted by the system before droping the conection.So if we want to change the default value of tcp_retries2 using TCP_USER_TIMEOUT which specifies the maximum amount of time transmitted data may remain unacknowledged, we have to increase the value of TCP_USER_TIMEOUT right?
In that case the conction will wait for a longer time and will not retransmit the data packet.
Please correct me, if something is wrong.
int name[] = {CTL_NET, NET_IPV4, NET_IPV4_TCP_RETRIES2};
long value = 0;
size_t size = sizeof(value);
if(!sysctl(name, sizeof(name)/sizeof(name[0]), &value, &size, NULL, 0) {
value // It contains current value from /proc/sys/net/ipv4/tcp_retries2
}
value = ... // Change value if it needed
if(!sysctl(name, sizeof(name)/sizeof(name[0]), NULL, NULL, &value, size) {
// Value in /proc/sys/net/ipv4/tcp_retries2 changed successfully
}
Programmatically way using C. It works at least on Ubuntu. But (according with code and system variables) looks like it influences on all TCP connections in system, not only one single connection.

Resources