I've a Snowflake table that has a column with doubles. One of the values are inf and -inf.
When I try to read this table in Spark, the job fails with the following error:
java.lang.NumberFormatException: For input string: "inf"
at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:2043)
at sun.misc.FloatingDecimal.parseDouble(FloatingDecimal.java:110)
at java.lang.Double.parseDouble(Double.java:538)
at scala.collection.immutable.StringLike$class.toDouble(StringLike.scala:285)
at scala.collection.immutable.StringOps.toDouble(StringOps.scala:29)
at net.snowflake.spark.snowflake.Conversions$$anonfun$1.apply(Conversions.scala:156)
at net.snowflake.spark.snowflake.Conversions$$anonfun$1.apply(Conversions.scala:144)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
at net.snowflake.spark.snowflake.Conversions$.net$snowflake$spark$snowflake$Conversions$$convertRow(Conversions.scala:144)
at net.snowflake.spark.snowflake.Conversions$$anonfun$createRowConverter$1.apply(Conversions.scala:132)
at net.snowflake.spark.snowflake.Conversions$$anonfun$createRowConverter$1.apply(Conversions.scala:132)
at net.snowflake.spark.snowflake.CSVConverter$$anonfun$convert$1.apply(CSVConverter.scala:73)
at net.snowflake.spark.snowflake.CSVConverter$$anonfun$convert$1.apply(CSVConverter.scala:34)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
at org.apache.spark.sql.execution.columnar.CachedRDDBuilder$$anonfun$1$$anon$1.next(InMemoryRelation.scala:100)
at org.apache.spark.sql.execution.columnar.CachedRDDBuilder$$anonfun$1$$anon$1.next(InMemoryRelation.scala:90)
at org.apache.spark.storage.memory.MemoryStore.putIterator(MemoryStore.scala:221)
at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:298)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1165)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1156)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:1091)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:1156)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:882)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:335)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:286)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
When looking at where the error happens, it seems to be in the row conversion in Conversions.scala with data.toDouble
at net.snowflake.spark.snowflake.Conversions$$anonfun$1.apply(Conversions.scala:156)
data.toDouble will not work if the input is inf. In scala the value should be Infinity instead. (which comes from Double.PositiveInfinity.toString)
What should be the workaround to avoid crashing in similar cases?
This is fixed as of v 2.6.0 of the spark connector, here is the PR.
I am trying to read parquet files from S3 with Spark. I tried both using Hive table or directly reading from S3.
Here is the stacktrace:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 83.0 failed 4 times, most recent failure: Lost task 0.3 in stage 83.0 (TID 17419, ip-10-23-0-40.ec2.internal, executor 82): org.apache.spark.sql.execution.QueryExecutionException: Encounter error while reading parquet files. One possible cause: Parquet column cannot be converted in the corresponding files. Details:
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:226)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:130)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:291)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:283)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.parquet.io.ParquetDecodingException: Can not read value at 1 in block 0 in file s3://path_to_my_file.snappy.parquet
at org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:251)
at org.apache.parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:207)
at org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:130)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:214)
... 21 more
Caused by: java.lang.ClassCastException: [B cannot be cast to java.lang.Long
at scala.runtime.BoxesRunTime.unboxToLong(BoxesRunTime.java:105)
at org.apache.spark.sql.catalyst.expressions.MutableLong.update(SpecificInternalRow.scala:148)
at org.apache.spark.sql.catalyst.expressions.SpecificInternalRow.update(SpecificInternalRow.scala:228)
at org.apache.spark.sql.execution.datasources.parquet.ParquetRowConverter$RowUpdater.set(ParquetRowConverter.scala:164)
at org.apache.spark.sql.execution.datasources.parquet.ParquetPrimitiveConverter.addBinary(ParquetRowConverter.scala:90)
at org.apache.parquet.column.impl.ColumnReaderImpl$2$6.writeValue(ColumnReaderImpl.java:317)
at org.apache.parquet.column.impl.ColumnReaderImpl.writeCurrentValueToConverter(ColumnReaderImpl.java:367)
at org.apache.parquet.io.RecordReaderImplementation.read(RecordReaderImplementation.java:406)
at org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:226)
... 26 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2041)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2029)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2028)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2028)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:966)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2262)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2211)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2200)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:777)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:401)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3389)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2550)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2550)
at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3370)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3369)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2550)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2764)
at org.apache.spark.sql.Dataset.getRows(Dataset.scala:254)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:291)
at org.apache.spark.sql.Dataset.show(Dataset.scala:751)
at org.apache.spark.sql.Dataset.show(Dataset.scala:710)
at org.apache.spark.sql.Dataset.show(Dataset.scala:719)
... 49 elided
Caused by: org.apache.spark.sql.execution.QueryExecutionException: Encounter error while reading parquet files. One possible cause: Parquet column cannot be converted in the corresponding files. Details:
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:226)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:130)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:291)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:283)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
... 3 more
Caused by: org.apache.parquet.io.ParquetDecodingException: Can not read value at 1 in block 0 in file s3://path_to_my_file.snappy.parquet
at org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:251)
at org.apache.parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:207)
at org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:130)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:214)
... 21 more
Caused by: java.lang.ClassCastException: [B cannot be cast to java.lang.Long
at scala.runtime.BoxesRunTime.unboxToLong(BoxesRunTime.java:105)
at org.apache.spark.sql.catalyst.expressions.MutableLong.update(SpecificInternalRow.scala:148)
at org.apache.spark.sql.catalyst.expressions.SpecificInternalRow.update(SpecificInternalRow.scala:228)
at org.apache.spark.sql.execution.datasources.parquet.ParquetRowConverter$RowUpdater.set(ParquetRowConverter.scala:164)
at org.apache.spark.sql.execution.datasources.parquet.ParquetPrimitiveConverter.addBinary(ParquetRowConverter.scala:90)
at org.apache.parquet.column.impl.ColumnReaderImpl$2$6.writeValue(ColumnReaderImpl.java:317)
at org.apache.parquet.column.impl.ColumnReaderImpl.writeCurrentValueToConverter(ColumnReaderImpl.java:367)
at org.apache.parquet.io.RecordReaderImplementation.read(RecordReaderImplementation.java:406)
at org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:226)
... 26 more
The strange thing when I read whole bucket with all partitions the error appears, but when I try to read just the file which resulted the issue, it is fine. The column has Long type. When I drop that column, everything works fine.
Any ideas?
Experts, i am facing a weird problem where my PySpark join of 2 dataframes is failing if i don't use broadcast. I am using Spark 1.6 with Python 2.17
My Join condition is very simple and the volumes are also minimal (in KB). This is generic code and all these names in below expressions are defined as variables containing exact values and working for many other files.
DF = src.withColumnRenamed(srcCol, lkpCol)\
.join(broadcast(lkpDF), lkpCol, 'left')\
.filter(isnull(lkpDF[uniqueID])).coalesce(1)
This piece of code is running fine as long as i am broadcasting my lookup Dataframe. The moment i remove it, i am facing below error-
19/06/21 13:58:59 WARN scheduler.TaskSetManager: Lost task 0.0 in stage 43.0 (TID 1532, svr-m03wn05.c24.hadoop.com, executor 3): java.lang.OutOfMemoryError: Unable to acquire 228 bytes of memory, got 0
at org.apache.spark.memory.MemoryConsumer.allocatePage(MemoryConsumer.java:120)
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.acquireNewPageIfNecessary(UnsafeExternalSorter.java:332)
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.insertRecord(UnsafeExternalSorter.java:347)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.insertRow(UnsafeExternalRowSorter.java:91)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:168)
at org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:90)
at org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:64)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:88)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:96)
at org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:95)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$$anonfun$2$$anon$1.hasNext(InMemoryColumnarTableScan.scala:140)
at org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:292)
at org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:171)
at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:78)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:242)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
19/06/21 13:59:00 WARN server.TransportChannelHandler: Exception in connection from svr-m03wn05.c24.hadoop.com/15.546.349.115:45076
java.io.IOException: Connection reset by peer
at sun.nio.ch.FileDispatcherImpl.read0(Native Method)
at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39)
at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223)
at sun.nio.ch.IOUtil.read(IOUtil.java:192)
at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:379)
at io.netty.buffer.PooledUnsafeDirectByteBuf.setBytes(PooledUnsafeDirectByteBuf.java:313)
at io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:881)
at io.netty.channel.socket.nio.NioSocketChannel.doReadBytes(NioSocketChannel.java:242)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:119)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
at java.lang.Thread.run(Thread.java:745)
19/06/21 13:59:00 WARN cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Container marked as failed: container_e68_1561070366427_23261_01_000004 on host: svr-m03wn05.c24.hadoop.com. Exit status: 52. Diagnostics: Exception from container-launch.
Container id: container_e68_1561070366427_23261_01_000004
Exit code: 52
Stack trace: ExitCodeException exitCode=52:
at org.apache.hadoop.util.Shell.runCommand(Shell.java:604)
at org.apache.hadoop.util.Shell.run(Shell.java:507)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:789)
at org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor.launchContainer(LinuxContainerExecutor.java:399)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Shell output: main : command provided 1
main : run as user is userabc
main : requested yarn user is userabc
Writing to tmp file /data/1/yarn/nm/nmPrivate/application_1561070366427_23261/container_e68_1561070366427_23261_01_000004/container_e68_1561070366427_23261_01_000004.pid.tmp
Container exited with a non-zero exit code 52
19/06/21 13:59:00 ERROR cluster.YarnScheduler: Lost executor 3 on svr-m03wn05.c24.hadoop.com: Container marked as failed: container_e68_1561070366427_23261_01_000004 on host: svr-m03wn05.c24.hadoop.com. Exit status: 52. Diagnostics: Exception from container-launch.
Container id: container_e68_1561070366427_23261_01_000004
Exit code: 52
Stack trace: ExitCodeException exitCode=52:
at org.apache.hadoop.util.Shell.runCommand(Shell.java:604)
at org.apache.hadoop.util.Shell.run(Shell.java:507)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:789)
at org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor.launchContainer(LinuxContainerExecutor.java:399)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Shell output: main : command provided 1
main : run as user is userabc
main : requested yarn user is userabc
Writing to tmp file /data/1/yarn/nm/nmPrivate/application_1561070366427_23261/container_e68_1561070366427_23261_01_000004/container_e68_1561070366427_23261_01_000004.pid.tmp
Getting below error while saving a dataframe as table with parquet mode, before saving table was repartitioned to 400, here is the spark submit arguments being parsed:
--num-executors 12 --executor-cores 8 --executor-memory 12g --driver-
memory 32g --driver-cores 2 --conf spark.sql.shuffle.partitions=400
18/11/05 22:02:04 ERROR FileFormatWriter: Aborting job null.
org.apache.spark.SparkException: Job aborted due to stage failure:
ShuffleMapStage 16 (saveAsTable at testSite.scala:192) has failed the maximum allowable number of times: 4. Most recent failure reason: org.apache.spark.shuffle.FetchFailedException:
Too large frame: 3405090943 at org.apache.spark.storage.ShuffleBlockFetcherIterator.throwFetchFailedException(ShuffleBlockFetcherIterator.scala:513)
at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:444)
at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:61)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.sort_addToSorter$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395) at org.apache.spark.sql.execution.RowIteratorFromScala.advanceNext(RowIterator.scala:83) at org.apache.spark.sql.execution.joins.SortMergeJoinScanner.advancedBufferedToRowWithNullFreeJoinKey(SortMergeJoinExec.scala:793) at org.apache.spark.sql.execution.joins.SortMergeJoinScanner.<init>(SortMergeJoinExec.scala:668) at org.apache.spark.sql.execution.joins.SortMergeJoinExec$$anonfun$doExecute$1.apply(SortMergeJoinExec.scala:204) at org.apache.spark.sql.execution.joins.SortMergeJoinExec$$anonfun$doExecute$1.apply(SortMergeJoinExec.scala:141) at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.IllegalArgumentException: Too large frame: 3405090943
at org.spark_project.guava.base.Preconditions.checkArgument(Preconditions.java:119)
at org.apache.spark.network.util.TransportFrameDecoder.decodeNext(TransportFrameDecoder.java:133)
at org.apache.spark.network.util.TransportFrameDecoder.channelRead(TransportFrameDecoder.java:81)
I'm trying to get a pretty large table from mysql so I can manipulate using spark/databricks. I can't get it to load into spark - I have tried taking smaller subsets, but even at the smallest reasonable unit, it still fails to load.
I have tried playing with the wait_timeout and interactive_timeout in mysql, but it doesn't seem to make any difference
I am also loading a smaller (different) table, and that loads just fine.
df_dataset = get_jdbc('raw_data_load', predicates=predicates).select('field1','field2', 'field3','date')
df_dataset = df_dataset.repartition('date')
df_dataset.registerTempTable('raw_data')
I then am trying to cache the data for sql purposes using
%sql
cache table raw_data;
And it goes and chugs for a while and his the database, but always times out after 30-40 minutes and I get the error below
Up until the point it times out, I see
Error in SQL statement: SparkException: Job aborted due to stage failure: Task 0 in stage 30.0 failed 4 times, most recent failure: Lost task 0.3 in stage 30.0 (TID 17075, 10.200.240.63, executor 1): com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure
The last packet successfully received from the server was 1,715,280 milliseconds ago. The last packet sent successfully to the server was 1,715,290 milliseconds ago.
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at com.mysql.jdbc.Util.handleNewInstance(Util.java:411)
at com.mysql.jdbc.SQLError.createCommunicationsException(SQLError.java:1121)
at com.mysql.jdbc.MysqlIO.nextRowFast(MysqlIO.java:2290)
at com.mysql.jdbc.MysqlIO.nextRow(MysqlIO.java:2046)
at com.mysql.jdbc.MysqlIO.readSingleRowSet(MysqlIO.java:3554)
at com.mysql.jdbc.MysqlIO.getResultSet(MysqlIO.java:491)
at com.mysql.jdbc.MysqlIO.readResultsForQueryOrUpdate(MysqlIO.java:3245)
at com.mysql.jdbc.MysqlIO.readAllResults(MysqlIO.java:2413)
at com.mysql.jdbc.MysqlIO.sqlQueryDirect(MysqlIO.java:2836)
at com.mysql.jdbc.ConnectionImpl.execSQL(ConnectionImpl.java:2825)
at com.mysql.jdbc.PreparedStatement.executeInternal(PreparedStatement.java:2156)
at com.mysql.jdbc.PreparedStatement.executeQuery(PreparedStatement.java:2323)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD.compute(JDBCRDD.scala:301)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:336)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:334)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1005)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:996)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:936)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:996)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:700)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.io.EOFException: Can not read response from server. Expected to read 10 bytes, read 4 bytes before connection was unexpectedly lost.
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:3166)
at com.mysql.jdbc.MysqlIO.nextRowFast(MysqlIO.java:2271)
... 42 more
Driver stacktrace:
com.databricks.backend.common.rpc.DatabricksExceptions$SQLExecutionException: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 30.0 failed 4 times, most recent failure: Lost task 0.3 in stage 30.0 (TID 17075, 10.200.240.63, executor 1): com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure
The last packet successfully received from the server was 1,715,280 milliseconds ago. The last packet sent successfully to the server was 1,715,290 milliseconds ago.
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at com.mysql.jdbc.Util.handleNewInstance(Util.java:411)
at com.mysql.jdbc.SQLError.createCommunicationsException(SQLError.java:1121)
at com.mysql.jdbc.MysqlIO.nextRowFast(MysqlIO.java:2290)
at com.mysql.jdbc.MysqlIO.nextRow(MysqlIO.java:2046)
at com.mysql.jdbc.MysqlIO.readSingleRowSet(MysqlIO.java:3554)
at com.mysql.jdbc.MysqlIO.getResultSet(MysqlIO.java:491)
at com.mysql.jdbc.MysqlIO.readResultsForQueryOrUpdate(MysqlIO.java:3245)
at com.mysql.jdbc.MysqlIO.readAllResults(MysqlIO.java:2413)
at com.mysql.jdbc.MysqlIO.sqlQueryDirect(MysqlIO.java:2836)
at com.mysql.jdbc.ConnectionImpl.execSQL(ConnectionImpl.java:2825)
at com.mysql.jdbc.PreparedStatement.executeInternal(PreparedStatement.java:2156)
at com.mysql.jdbc.PreparedStatement.executeQuery(PreparedStatement.java:2323)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD.compute(JDBCRDD.scala:301)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:336)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:334)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1005)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:996)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:936)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:996)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:700)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.io.EOFException: Can not read response from server. Expected to read 10 bytes, read 4 bytes before connection was unexpectedly lost.
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:3166)
at com.mysql.jdbc.MysqlIO.nextRowFast(MysqlIO.java:2271)
... 42 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1442)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1430)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1429)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1429)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:803)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:803)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:803)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1657)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1612)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1601)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1937)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1950)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1963)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1977)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:275)
at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2409)
at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2408)
at org.apache.spark.sql.Dataset$$anonfun$60.apply(Dataset.scala:2791)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:87)
at org.apache.spark.sql.execution.SQLExecution$.withFileAccessAudit(SQLExecution.scala:53)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:70)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2790)
at org.apache.spark.sql.Dataset.count(Dataset.scala:2408)
at org.apache.spark.sql.execution.command.CacheTableCommand.run(cache.scala:45)
at com.databricks.sql.acl.TrustedRunnableCommand$$anonfun$run$1.apply(TrustedRunnableCommand.scala:29)
at com.databricks.sql.acl.TrustedRunnableCommand$$anonfun$run$1.apply(TrustedRunnableCommand.scala:29)
at com.databricks.sql.acl.CheckPermissions$.trusted(CheckPermissions.scala:460)
at com.databricks.sql.acl.TrustedRunnableCommand.run(TrustedRunnableCommand.scala:29)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.executeCollect(commands.scala:67)
at org.apache.spark.sql.Dataset.<init>(Dataset.scala:185)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:64)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:599)
at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:698)
at com.databricks.backend.daemon.driver.SQLDriverLocal$$anonfun$1.apply(SQLDriverLocal.scala:82)
at com.databricks.backend.daemon.driver.SQLDriverLocal$$anonfun$1.apply(SQLDriverLocal.scala:28)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.immutable.List.map(List.scala:285)
at com.databricks.backend.daemon.driver.SQLDriverLocal.executeSql(SQLDriverLocal.scala:28)
at com.databricks.backend.daemon.driver.SQLDriverLocal.repl(SQLDriverLocal.scala:128)
at com.databricks.backend.daemon.driver.DriverLocal$$anonfun$execute$2.apply(DriverLocal.scala:230)
at com.databricks.backend.daemon.driver.DriverLocal$$anonfun$execute$2.apply(DriverLocal.scala:211)
at com.databricks.logging.UsageLogging$$anonfun$withAttributionContext$1.apply(UsageLogging.scala:173)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
at com.databricks.logging.UsageLogging$class.withAttributionContext(UsageLogging.scala:168)
at com.databricks.backend.daemon.driver.DriverLocal.withAttributionContext(DriverLocal.scala:39)
at com.databricks.logging.UsageLogging$class.withAttributionTags(UsageLogging.scala:206)
at com.databricks.backend.daemon.driver.DriverLocal.withAttributionTags(DriverLocal.scala:39)
at com.databricks.backend.daemon.driver.DriverLocal.execute(DriverLocal.scala:211)
at com.databricks.backend.daemon.driver.DriverWrapper$$anonfun$tryExecutingCommand$2.apply(DriverWrapper.scala:589)
at com.databricks.backend.daemon.driver.DriverWrapper$$anonfun$tryExecutingCommand$2.apply(DriverWrapper.scala:589)
at scala.util.Try$.apply(Try.scala:192)
at com.databricks.backend.daemon.driver.DriverWrapper.tryExecutingCommand(DriverWrapper.scala:584)
at com.databricks.backend.daemon.driver.DriverWrapper.executeCommand(DriverWrapper.scala:488)
at com.databricks.backend.daemon.driver.DriverWrapper.runInnerLoop(DriverWrapper.scala:391)
at com.databricks.backend.daemon.driver.DriverWrapper.runInner(DriverWrapper.scala:348)
at com.databricks.backend.daemon.driver.DriverWrapper.run(DriverWrapper.scala:215)
at java.lang.Thread.run(Thread.java:745)
Caused by: com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure
The last packet successfully received from the server was 1,715,280 milliseconds ago. The last packet sent successfully to the server was 1,715,290 milliseconds ago.
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at com.mysql.jdbc.Util.handleNewInstance(Util.java:411)
at com.mysql.jdbc.SQLError.createCommunicationsException(SQLError.java:1121)
at com.mysql.jdbc.MysqlIO.nextRowFast(MysqlIO.java:2290)
at com.mysql.jdbc.MysqlIO.nextRow(MysqlIO.java:2046)
at com.mysql.jdbc.MysqlIO.readSingleRowSet(MysqlIO.java:3554)
at com.mysql.jdbc.MysqlIO.getResultSet(MysqlIO.java:491)
at com.mysql.jdbc.MysqlIO.readResultsForQueryOrUpdate(MysqlIO.java:3245)
at com.mysql.jdbc.MysqlIO.readAllResults(MysqlIO.java:2413)
at com.mysql.jdbc.MysqlIO.sqlQueryDirect(MysqlIO.java:2836)
at com.mysql.jdbc.ConnectionImpl.execSQL(ConnectionImpl.java:2825)
at com.mysql.jdbc.PreparedStatement.executeInternal(PreparedStatement.java:2156)
at com.mysql.jdbc.PreparedStatement.executeQuery(PreparedStatement.java:2323)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD.compute(JDBCRDD.scala:301)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:336)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:334)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1005)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:996)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:936)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:996)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:700)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
... 1 more
Caused by: java.io.EOFException: Can not read response from server. Expected to read 10 bytes, read 4 bytes before connection was unexpectedly lost.
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:3166)
at com.mysql.jdbc.MysqlIO.nextRowFast(MysqlIO.java:2271)
... 42 more
at com.databricks.backend.daemon.driver.SQLDriverLocal.executeSql(SQLDriverLocal.scala:116)
at com.databricks.backend.daemon.driver.SQLDriverLocal.repl(SQLDriverLocal.scala:128)
at com.databricks.backend.daemon.driver.DriverLocal$$anonfun$execute$2.apply(DriverLocal.scala:230)
at com.databricks.backend.daemon.driver.DriverLocal$$anonfun$execute$2.apply(DriverLocal.scala:211)
at com.databricks.logging.UsageLogging$$anonfun$withAttributionContext$1.apply(UsageLogging.scala:173)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
at com.databricks.logging.UsageLogging$class.withAttributionContext(UsageLogging.scala:168)
at com.databricks.backend.daemon.driver.DriverLocal.withAttributionContext(DriverLocal.scala:39)
at com.databricks.logging.UsageLogging$class.withAttributionTags(UsageLogging.scala:206)
at com.databricks.backend.daemon.driver.DriverLocal.withAttributionTags(DriverLocal.scala:39)
at com.databricks.backend.daemon.driver.DriverLocal.execute(DriverLocal.scala:211)
at com.databricks.backend.daemon.driver.DriverWrapper$$anonfun$tryExecutingCommand$2.apply(DriverWrapper.scala:589)
at com.databricks.backend.daemon.driver.DriverWrapper$$anonfun$tryExecutingCommand$2.apply(DriverWrapper.scala:589)
at scala.util.Try$.apply(Try.scala:192)
at com.databricks.backend.daemon.driver.DriverWrapper.tryExecutingCommand(DriverWrapper.scala:584)
at com.databricks.backend.daemon.driver.DriverWrapper.executeCommand(DriverWrapper.scala:488)
at com.databricks.backend.daemon.driver.DriverWrapper.runInnerLoop(DriverWrapper.scala:391)
at com.databricks.backend.daemon.driver.DriverWrapper.runInner(DriverWrapper.scala:348)
at com.databricks.backend.daemon.driver.DriverWrapper.run(DriverWrapper.scala:215)
at java.lang.Thread.run(Thread.java:745)
With extremely large tables you're going to want to partition the query across your executors. By default the JDBC reader will read the query the parallelize it from the driver. If you have an incrementing, sequential key in the table you can parallelize using the lowerBound, upperBound, and numPartitions parameters. Here's an example taken from https://docs.databricks.com/spark/latest/data-sources/sql-databases.html#python-example
df = spark.read.\
jdbc(url=jdbcUrl, \
table='employees',\
column='emp_no',\
lowerBound=1,\
upperBound=100000, \
numPartitions=100)
df.show()
Having said that, you may want to read and write the data out to Parquet as that will perform better than re-reading from JDBC again.