Sampling data batch wise from tensor Pytorch - python-3.x

I have train_x and valid_x splited from trainX ,train_y and valid_y splited from trainY and they are having shapes as per below. i want to classify images of labels LABELS = set(["Faces", "Leopards", "Motorbikes", "airplanes"]).
print(train_x.shape, len(train_y))
torch.Size([1339, 96, 96, 3]) 1339
print(valid_x.shape, len(valid_y))
torch.Size([335, 96, 96, 3]) 335
print(testX.shape, len(testY))
torch.Size([559, 96, 96, 3]) 559
so i want to use regular train/valid on data batch-wise code as per below :
#train the network
n_epochs = 20
valid_loss = []
train_loss = []
for epoch in range(1,n_epochs+1):
cur_train_loss = 0.0
cur_valid_loss = 0.0
#####################
#### Train model ####
#####################
cnn_model.train()
for data, target in trainLoader:
if train_on_gpu:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = cnn_model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
cur_train_loss += loss.item() * data.size(0)
########################
#### Validate model ####
########################
cnn_model.eval()
for data, target in validLoader:
if train_on_gpu:
data, target = data.cuda(), target.cuda()
output = cnn_model(data)
loss = criterion(output, target)
cur_valid_loss += loss.item() * data.size(0)
# calculate avg loss
avg_train_loss = cur_train_loss / len(trainLoader.sampler)
avg_valid_loss = cur_valid_loss / len(validLoader.sampler)
train_loss.append(avg_train_loss)
valid_loss.append(avg_valid_loss)
print('Epoch: {} \t train_loss: {:.6f} \t valid_loss: {:.6f}'.format(epoch, avg_train_loss, avg_valid_loss))
so what i have to do for that ?
i have search for that but nothing specific i found out. i want to use pytorch for this. i have built model for another problem same like this but in that i have used DataLoader for loading one batch of data at a time for training and validation.

You can create a dataset with torch.utils.data.TensorDataset, where each sample of train_x is associated with its corresponding label in train_y, such that the DataLoader can create batches as you are used to.
from torch.utils.data import DataLoader, TensorDataset
train_dataset = TensorDataset(train_x, train_y)
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
valid_dataset = TensorDataset(valid_x, valid_y)
valid_dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=False)
test_dataset = TensorDataset(testX, testY)
test_dataloader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False)

Related

how to overfit a model on a single batch in keras?

I am trying to overfit my model on a single batch to check model integrity. I am using Keras and TensorFlow for the implementation of my model and coding style for this project.
I know how to get the single batch and overfit the model in PyTorch but don't have an idea in Keras.
to get a single batch in PyTorch I used:
images, labels = next(iter(train_dataset))
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr = 0.0001)
for epoch in range(epochs):
print(f"Epoch [{epoch}/{epochs}]")
# for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
data = data.reshape(data.shape[0], -1)
# forward
score = model(data)
loss = criterion(score, target)
print(f"Loss: {loss.item()}")
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
How to do it in keras any helping matrial?
Thank you everyone for coming here. I found a solution and here it is:
datagen = ImageDataGenerator(rescale=1 / 255.0,
rotation_range=20,
zoom_range=0.2,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range=0.2,
horizontal_flip=True,
fill_mode="nearest"
)
# preprocessing_function=preprocess_input,
# Declare an image generator for validation & testing without generation
test_datagen = ImageDataGenerator(rescale = 1./255,)#preprocessing_function=preprocess_input
# Declare generators for training, validation, and testing from DataFrames
train_gen = datagen.flow_from_directory(directory_train,
target_size=(512, 512),
color_mode='rgb',
batch_size=BATCH_SIZE,
class_mode='binary',
shuffle=True)
val_gen = test_datagen.flow_from_directory(directory_val,
target_size=(512, 512),
color_mode='rgb',
batch_size=BATCH_SIZE,
class_mode='binary',
shuffle=False)
test_gen = test_datagen.flow_from_directory(directory_test,
target_size=(512, 512),
color_mode='rgb',
batch_size=BATCH_SIZE,
class_mode='binary',
shuffle=False)
train_images, train_labels = next(iter(train_gen))
val_images, val_labels = next(iter(val_gen))
test_images, test_labels = next(iter(val_gen))
#check shape for selected Batch
print("Length of Train images : {}".format(len(train_images)))
print("shape of Train images : {}".format(train_images.shape))
print("shape of Train labels : {}".format(train_labels.shape))
Length of Train images : 32
shape of Train images : (32, 512, 512, 3)
shape of Train labels : (32,)
history = model.fit(train_images, train_labels,
use_multiprocessing=True,
workers=16,
epochs=100,
class_weight=class_weights,
validation_data=(val_images, val_labels),
shuffle=True,
callbacks=call_backs)

Function AddmmBackward returned an invalid gradient

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import matplotlib.pyplot as plt
import numpy as np
import torch.optim as optim
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 3)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = NeuralNetwork()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, random_split
def UploadData(path, train):
#set up transforms for train and test datasets
train_transforms = transforms.Compose([transforms.Grayscale(num_output_channels=1), transforms.Resize(255), transforms.CenterCrop(224), transforms.RandomRotation(30),
transforms.RandomHorizontalFlip(), transforms.transforms.ToTensor()])
valid_transforms = transforms.Compose([transforms.Grayscale(num_output_channels=1), transforms.Resize(255), transforms.CenterCrop(224), transforms.RandomRotation(30),
transforms.RandomHorizontalFlip(), transforms.transforms.ToTensor()])
test_transforms = transforms.Compose([transforms.Grayscale(num_output_channels=1), transforms.Resize(255), transforms.CenterCrop(224), transforms.ToTensor()])
#set up datasets from Image Folders
train_dataset = datasets.ImageFolder(path + '/train', transform=train_transforms)
valid_dataset = datasets.ImageFolder(path + '/validation', transform=valid_transforms)
test_dataset = datasets.ImageFolder(path + '/test', transform=test_transforms)
#set up dataloaders with batch size of 32
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
validloader = torch.utils.data.DataLoader(valid_dataset, batch_size=32, shuffle=True)
testloader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=True)
return trainloader, validloader, testloader
trainloader, validloader, testloader = UploadData("/home/lns/research/dataset", True)
epochs = 5
min_valid_loss = np.inf
for e in range(epochs):
train_loss = 0.0
for data, labels in trainloader:
# Transfer Data to GPU if available
if torch.cuda.is_available():
print("using GPU for data")
data, labels = data.cuda(), labels.cuda()
# Clear the gradients
optimizer.zero_grad()
# Forward Pass
target = net(data)
# Find the Loss
loss = criterion(target,labels)
# Calculate gradients
loss.backward()
# Update Weights
optimizer.step()
# Calculate Loss
train_loss += loss.item()
valid_loss = 0.0
model.eval() # Optional when not using Model Specific layer
for data, labels in validloader:
# Transfer Data to GPU if available
if torch.cuda.is_available():
print("using GPU for data")
data, labels = data.cuda(), labels.cuda()
# Forward Pass
target = net(data)
# Find the Loss
loss = criterion(target,labels)
# Calculate Loss
valid_loss += loss.item()
print('Epoch ',e+1, '\t\t Training Loss: ',train_loss / len(trainloader),' \t\t Validation Loss: ',valid_loss / len(validloader))
if min_valid_loss > valid_loss:
print("Validation Loss Decreased(",min_valid_loss,"--->",valid_loss,") \t Saving The Model")
min_valid_loss = valid_loss
# Saving State Dict
torch.save(net.state_dict(), '/home/lns/research/MODEL.pth')
After searching a lot i am asking for help. Can someone help me
understand why this error is occuring in backward propagation.
i followed pytorch cnn tutorail and geeksforgeeks tutorial
dataset is x ray images transformed into grayscale and resize to 255
Is my neural network is wrong or data is not processed correctly?
This is a size mismmatch between the output of your CNN and the number of neurons on on your first fully-connected layer. Because of missing padding, the number of elements when flattened is 16*4*4 i.e. 256 (and not 16*5*5):
self.fc1 = nn.Linear(256, 120)
Once modified, the model will run correctly:
>>> model = NeuralNetwork()
>>> model(torch.rand(1, 1, 28, 28)).shape
torch.Size([1, 3])
Alternatively, you can use an nn.LazyLinear which will deduce the in_feature argument during the very first inference based on its input shape.
self.fc1 = nn.LazyLinear(120)

Almost non-existent training accuracy and low test accuracy

I am really new to Machine Learning and I am not so well versed in coding in general. However there is need to look through the customers feedback at our store, that average quite a lot each year, yet we cannot tell % of positive, negative and neutral.
Currently I am trying to train a Bert Model to do simple multi labeled sentiment analysis. The input is our store's customers feedback. The customers feedback is not always so clearly defined since customers do tend to tell long and long about their experience and their sentiment is not always so clear. However we managed to get positive, negative and neutral, each set 2247 samples.
But when I try to train it the training accuracy is around 0.4% which is super low. Validation score is around 60%. F1-score is around 60% for each of the label. I wonder what can be done to improve this training accuracy. I have been stuck for a while. Please take a look at my codes and help me out with this.
I have tried changing learning rate (tried all learning rate Bert suggested and 1e-5),changing Max LEN, changing amount of EPOCH, changing drop out rate (0.1, 0.2, 0.3, 0.4, 0.5), but so far nothing yielded results.
#read dataset
df = pd.read_csv("data.csv",header=None, names=['content', 'sentiment'], sep='\;', lineterminator='\r',encoding = "ISO-8859-1",engine="python")
from sklearn.utils import shuffle
df = shuffle(df)
df['sentiment'] = df['sentiment'].replace(to_replace = [-1, 0, 1], value = [0, 1, 2])
df.head()
#Load pretrained FinBert model and get bert tokenizer from it
PRE_TRAINED_MODEL_NAME = 'TurkuNLP/bert-base-finnish-cased-v1'
tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)
#Choose sequence Length
token_lens = []
for txt in df.content:
tokens = tokenizer.encode(txt, max_length=512)
token_lens.append(len(tokens))
sns.distplot(token_lens)
plt.xlim([0, 256]);
plt.xlabel('Token count');
MAX_LEN = 260
#Make a PyTorch dataset
class FIDataset(Dataset):
def __init__(self, texts, targets, tokenizer, max_len):
self.texts = texts
self.targets = targets
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.texts)
def __getitem__(self, item):
text = str(self.texts[item])
target = self.targets[item]
encoding = self.tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=self.max_len,
return_token_type_ids=False,
pad_to_max_length=True,
return_attention_mask=True,
return_tensors='pt',
)
return {
'text': text,
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten(),
'targets': torch.tensor(target, dtype=torch.long)
}
#split test and train
df_train, df_test = train_test_split(
df,
test_size=0.1,
random_state=RANDOM_SEED
)
df_val, df_test = train_test_split(
df_test,
test_size=0.5,
random_state=RANDOM_SEED
)
df_train.shape, df_val.shape, df_test.shape
#data loader function
def create_data_loader(df, tokenizer, max_len, batch_size):
ds = FIDataset(
texts=df.content.to_numpy(),
targets=df.sentiment.to_numpy(),
tokenizer=tokenizer,
max_len=max_len
)
return DataLoader(
ds,
batch_size=batch_size,
num_workers=4
)
#Load data into train, test, val
BATCH_SIZE = 16
train_data_loader = create_data_loader(df_train, tokenizer, MAX_LEN, BATCH_SIZE)
val_data_loader = create_data_loader(df_val, tokenizer, MAX_LEN, BATCH_SIZE)
test_data_loader = create_data_loader(df_test, tokenizer, MAX_LEN, BATCH_SIZE)
# Sentiment Classifier based on Bert model just loaded
class SentimentClassifier(nn.Module):
def __init__(self, n_classes):
super(SentimentClassifier, self).__init__()
self.bert = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME)
self.drop = nn.Dropout(p=0.1)
self.out = nn.Linear(self.bert.config.hidden_size, n_classes)
def forward(self, input_ids, attention_mask):
returned = self.bert(
input_ids=input_ids,
attention_mask=attention_mask
)
pooled_output = returned["pooler_output"]
output = self.drop(pooled_output)
return self.out(output)
#Create a Classifier instance and move to GPU
model = SentimentClassifier(3)
model = model.to(device)
#Optimize with AdamW
EPOCHS = 5
optimizer = AdamW(model.parameters(), lr= 2e-5, correct_bias=False)
total_steps = len(train_data_loader) * EPOCHS
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=0,
num_training_steps=total_steps
)
loss_fn = nn.CrossEntropyLoss().to(device)
#Train each Epoch function
def train_epoch(
model,
data_loader,
loss_fn,
optimizer,
device,
scheduler,
n_examples
):
model = model.train()
losses = []
correct_predictions = 0
for d in data_loader:
input_ids = d["input_ids"].to(device)
attention_mask = d["attention_mask"].to(device)
targets = d["targets"].to(device)
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask
)
_, preds = torch.max(outputs, dim=1)
loss = loss_fn(outputs, targets)
correct_predictions += torch.sum(preds == targets)
losses.append(loss.item())
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
return correct_predictions.double() / n_examples, np.mean(losses)
#Eval model function
def eval_model(model, data_loader, loss_fn, device, n_examples):
model = model.eval()
losses = []
correct_predictions = 0
with torch.no_grad():
torch.cuda.empty_cache()
for d in data_loader:
input_ids = d["input_ids"].to(device)
attention_mask = d["attention_mask"].to(device)
targets = d["targets"].to(device)
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask
)
_, preds = torch.max(outputs, dim=1)
loss = loss_fn(outputs, targets)
correct_predictions += torch.sum(preds == targets)
losses.append(loss.item())
return correct_predictions.double() / n_examples, np.mean(losses)
#training loop through each epochs
import torch
torch.cuda.empty_cache()
history = defaultdict(list)
best_accuracy = 0
if __name__ == '__main__':
for epoch in range(EPOCHS):
print(f'Epoch {epoch + 1}/{EPOCHS}')
print('-' * 10)
train_acc, train_loss = train_epoch(
model,
train_data_loader,
loss_fn,
optimizer,
device,
scheduler,
len(df_train)
)
print(f'Train loss {train_loss} accuracy {train_acc}')
val_acc, val_loss = eval_model(
model,
val_data_loader,
loss_fn,
device,
len(df_val)
)
print(f'Val loss {val_loss} accuracy {val_acc}')
print()
history['train_acc'].append(train_acc)
history['train_loss'].append(train_loss)
history['val_acc'].append(val_acc)
history['val_loss'].append(val_loss)
if val_acc > best_accuracy:
torch.save(model.state_dict(), 'best_model_state.bin')
best_accuracy = val_acc
-- Edit: I have printed out preds and targets as well as train and val accuracy
Here _, preds = torch.max(outputs, dim=1), you probably want argmax, not max?
Print out preds and targets to better see what's going on.
Edit after preds and targets printed out. For epochs 4 and 5, preds matches targets exactly, so train accuracy should be 1. I think the issue is that the accuracy is divided by n_examples, which is a number of examples in the whole train dataset, while it should be divided by the number of examples in the epoch.

vgg probability doesn't add up to 1, pytorch

I've trained a vgg16 model to predict 102 classes of flowers.
It works however now that I'm trying to understand one of it's predictions I feel it's not acting normally.
model layout
# Imports here
import os
import numpy as np
import torch
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import json
from pprint import pprint
from scipy import misc
%matplotlib inline
data_dir = 'flower_data'
train_dir = data_dir + '/train'
test_dir = data_dir + '/valid'
json_data=open('cat_to_name.json').read()
main_classes = json.loads(json_data)
main_classes = {int(k):v for k,v in classes.items()}
train_transform_2 = transforms.Compose([transforms.RandomResizedCrop(224),
transforms.RandomRotation(30),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
test_transform_2= transforms.Compose([transforms.RandomResizedCrop(224),
transforms.ToTensor()])
# TODO: Load the datasets with ImageFolder
train_data = datasets.ImageFolder(train_dir, transform=train_transform_2)
test_data = datasets.ImageFolder(test_dir, transform=test_transform_2)
# define dataloader parameters
batch_size = 20
num_workers=0
# TODO: Using the image datasets and the trainforms, define the dataloaders
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,
num_workers=num_workers, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size,
num_workers=num_workers, shuffle=True)
vgg16 = models.vgg16(pretrained=True)
# Freeze training for all "features" layers
for param in vgg16.features.parameters():
param.requires_grad = False
import torch.nn as nn
n_inputs = vgg16.classifier[6].in_features
# add last linear layer (n_inputs -> 102 flower classes)
# new layers automatically have requires_grad = True
last_layer = nn.Linear(n_inputs, len(classes))
vgg16.classifier[6] = last_layer
import torch.optim as optim
# specify loss function (categorical cross-entropy)
criterion = nn.CrossEntropyLoss()
# specify optimizer (stochastic gradient descent) and learning rate = 0.001
optimizer = optim.SGD(vgg16.classifier.parameters(), lr=0.001)
pre_trained_model=torch.load("model.pt")
new=list(pre_trained_model.items())
my_model_kvpair=vgg16.state_dict()
count=0
for key,value in my_model_kvpair.items():
layer_name, weights = new[count]
my_model_kvpair[key] = weights
count+=1
# number of epochs to train the model
n_epochs = 6
# initialize tracker for minimum validation loss
valid_loss_min = np.Inf # set initial "min" to infinity
for epoch in range(1, n_epochs+1):
# keep track of training and validation loss
train_loss = 0.0
valid_loss = 0.0
###################
# train the model #
###################
# model by default is set to train
vgg16.train()
for batch_i, (data, target) in enumerate(train_loader):
# clear the gradients of all optimized variables
optimizer.zero_grad()
# forward pass: compute predicted outputs by passing inputs to the model
output = vgg16(data)
# calculate the batch loss
loss = criterion(output, target)
# backward pass: compute gradient of the loss with respect to model parameters
loss.backward()
# perform a single optimization step (parameter update)
optimizer.step()
# update training loss
train_loss += loss.item()
if batch_i % 20 == 19: # print training loss every specified number of mini-batches
print('Epoch %d, Batch %d loss: %.16f' %
(epoch, batch_i + 1, train_loss / 20))
train_loss = 0.0
######################
# validate the model #
######################
vgg16.eval() # prep model for evaluation
for data, target in test_loader:
# forward pass: compute predicted outputs by passing inputs to the model
output = vgg16(data)
# calculate the loss
loss = criterion(output, target)
# update running validation loss
valid_loss += loss.item()
# print training/validation statistics
# calculate average loss over an epoch
train_loss = train_loss/len(train_loader.dataset)
valid_loss = valid_loss/len(test_loader.dataset)
print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
epoch+1,
train_loss,
valid_loss
))
# save model if validation loss has decreased
if valid_loss <= valid_loss_min:
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(
valid_loss_min,
valid_loss))
torch.save(vgg16.state_dict(), 'model.pt')
valid_loss_min = valid_loss
testing on a single image
tensor = torch.from_numpy(test_image)
reshaped = tensor.permute(2, 0, 1).unsqueeze(0)
floatified = reshaped.to(torch.float32) / 255
vgg16(floatified)
>>>
tensor([[ 2.5686, -1.1964, -0.0872, -1.7010, -1.6669, -1.0638, 0.4515, 0.1124,
0.0166, 0.3156, 1.1699, 1.5374, 1.8720, 2.5184, 2.9046, -0.8241,
-1.1949, -0.5700, 0.8692, -1.0485, 0.0390, -1.3783, -3.4632, -0.0143,
1.0986, 0.2667, -1.1127, -0.8515, 0.7759, -0.7528, 1.6366, -0.1170,
-0.4983, -2.6970, 0.7545, 0.0188, 0.1094, 0.5002, 0.8838, -0.0006,
-1.7993, -1.3706, 0.4964, -0.3251, -1.7313, 1.8731, 2.4963, 1.1713,
-1.5726, 1.5476, 3.9576, 0.7388, 0.0228, 0.3947, -1.7237, -1.8350,
-2.0297, 1.4088, -1.3469, 1.6128, -1.0851, 2.0257, 0.5881, 0.7498,
0.0738, 2.0592, 1.8034, -0.5468, 1.9512, 0.4534, 0.7746, -1.0465,
-0.7254, 0.3333, -1.6506, -0.4242, 1.9529, -0.4542, 0.2396, -1.6804,
-2.7987, -0.6367, -0.3599, 1.0102, 2.6319, 0.8305, -1.4333, 3.3043,
-0.4021, -0.4877, 0.9125, 0.0607, -1.0326, 1.3186, -2.5861, 0.1211,
-2.3177, -1.5040, 1.0416, 1.4008, 1.4225, -2.7291]],
grad_fn=<ThAddmmBackward>)
sum([ 2.5686, -1.1964, -0.0872, -1.7010, -1.6669, -1.0638, 0.4515, 0.1124,
0.0166, 0.3156, 1.1699, 1.5374, 1.8720, 2.5184, 2.9046, -0.8241,
-1.1949, -0.5700, 0.8692, -1.0485, 0.0390, -1.3783, -3.4632, -0.0143,
1.0986, 0.2667, -1.1127, -0.8515, 0.7759, -0.7528, 1.6366, -0.1170,
-0.4983, -2.6970, 0.7545, 0.0188, 0.1094, 0.5002, 0.8838, -0.0006,
-1.7993, -1.3706, 0.4964, -0.3251, -1.7313, 1.8731, 2.4963, 1.1713,
-1.5726, 1.5476, 3.9576, 0.7388, 0.0228, 0.3947, -1.7237, -1.8350,
-2.0297, 1.4088, -1.3469, 1.6128, -1.0851, 2.0257, 0.5881, 0.7498,
0.0738, 2.0592, 1.8034, -0.5468, 1.9512, 0.4534, 0.7746, -1.0465,
-0.7254, 0.3333, -1.6506, -0.4242, 1.9529, -0.4542, 0.2396, -1.6804,
-2.7987, -0.6367, -0.3599, 1.0102, 2.6319, 0.8305, -1.4333, 3.3043,
-0.4021, -0.4877, 0.9125, 0.0607, -1.0326, 1.3186, -2.5861, 0.1211,
-2.3177, -1.5040, 1.0416, 1.4008, 1.4225, -2.7291])
>>>
5.325799999999998
given this as how I test it on a single image (and the model as usual is trained and tested on batches it returns a prediction matrix that doesn't seem to be normalized or add up to 1.
Is this normal?
Yes, official network implementations in PyTorch don't apply softmax to the last linear layer. Check the code for VGG. You can use nn.softmax to achieve what you want:
m = nn.Softmax()
out = vgg16(floatified)
out = m(out)
You can also use nn.functional.softmax:
out = nn.functional.softmax(vgg16(floatified))

PyTorch: Add validation error in training

I am using PyTorch to train a cnn model. Here is my Network architecture:
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as I
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 5)
self.pool = nn.MaxPool2d(2,2)
self.conv1_bn = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 64, 5)
self.conv2_drop = nn.Dropout2d()
self.conv2_bn = nn.BatchNorm2d(64)
self.fc1 = torch.nn.Linear(53*53*64, 256)
self.fc2 = nn.Linear(256, 136)
def forward(self, x):
x = F.relu(self.conv1_bn(self.pool(self.conv1(x))))
x = F.relu(self.conv2_bn(self.pool(self.conv2_drop(self.conv2(x)))))
x = x.view(-1, 53*53*64)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return x
Then I train the model like below:
# prepare the net for training
net.train()
for epoch in range(n_epochs): # loop over the dataset multiple times
running_loss = 0.0
# train on batches of data, assumes you already have train_loader
for batch_i, data in enumerate(train_loader):
# get the input images and their corresponding labels
images = data['image']
key_pts = data['keypoints']
# flatten pts
key_pts = key_pts.view(key_pts.size(0), -1)
# wrap them in a torch Variable
images, key_pts = Variable(images), Variable(key_pts)
# convert variables to floats for regression loss
key_pts = key_pts.type(torch.FloatTensor)
images = images.type(torch.FloatTensor)
# forward pass to get outputs
output_pts = net(images)
# calculate the loss between predicted and target keypoints
loss = criterion(output_pts, key_pts)
# zero the parameter (weight) gradients
optimizer.zero_grad()
# backward pass to calculate the weight gradients
loss.backward()
# update the weights
optimizer.step()
# print loss statistics
running_loss += loss.data[0]
I am wondering if it is possible to add the validation error in the training? I mean something like this (validation split) in Keras:
myModel.fit(trainX, trainY, epochs=50, batch_size=1, verbose=2, validation_split = 0.1)
Here is an example how to split your dataset for training and validation, then switch between the two phases every epoch:
import numpy as np
import torch
from torchvision import datasets
from torch.autograd import Variable
from torch.utils.data.sampler import SubsetRandomSampler
# Examples:
my_dataset = datasets.MNIST(root="/home/benjamin/datasets/mnist", train=True, download=True)
validation_split = 0.1
dataset_len = len(my_dataset)
indices = list(range(dataset_len))
# Randomly splitting indices:
val_len = int(np.floor(validation_split * dataset_len))
validation_idx = np.random.choice(indices, size=val_len, replace=False)
train_idx = list(set(indices) - set(validation_idx))
# Contiguous split
# train_idx, validation_idx = indices[split:], indices[:split]
## Defining the samplers for each phase based on the random indices:
train_sampler = SubsetRandomSampler(train_idx)
validation_sampler = SubsetRandomSampler(validation_idx)
train_loader = torch.utils.data.DataLoader(my_dataset, sampler=train_sampler)
validation_loader = torch.utils.data.DataLoader(my_dataset, sampler=validation_sampler)
data_loaders = {"train": train_loader, "val": validation_loader}
data_lengths = {"train": len(train_idx), "val": val_len}
# Training with Validation (your code + code from Pytorch tutorial: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html)
n_epochs = 40
net = ...
for epoch in range(n_epochs):
print('Epoch {}/{}'.format(epoch, n_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
optimizer = scheduler(optimizer, epoch)
net.train(True) # Set model to training mode
else:
net.train(False) # Set model to evaluate mode
running_loss = 0.0
# Iterate over data.
for data in data_loaders[phase]:
# get the input images and their corresponding labels
images = data['image']
key_pts = data['keypoints']
# flatten pts
key_pts = key_pts.view(key_pts.size(0), -1)
# wrap them in a torch Variable
images, key_pts = Variable(images), Variable(key_pts)
# convert variables to floats for regression loss
key_pts = key_pts.type(torch.FloatTensor)
images = images.type(torch.FloatTensor)
# forward pass to get outputs
output_pts = net(images)
# calculate the loss between predicted and target keypoints
loss = criterion(output_pts, key_pts)
# zero the parameter (weight) gradients
optimizer.zero_grad()
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
# update the weights
optimizer.step()
# print loss statistics
running_loss += loss.data[0]
epoch_loss = running_loss / data_lengths[phase]
print('{} Loss: {:.4f}'.format(phase, epoch_loss))

Resources