How does DenseLayout in qiskit's transpiler work? - layout

I'm looking for an explanation about the Dense Layout algorithm used by qiskit's transpiler.
I saw the source code, but still I don't understand what """Choose a Layout by finding the most connected subset of qubits""" means!
Is there a paper about this kind of mapping algorithm or other resource I can learn about it from?

It does a breadth first search for a connected subset starting at each qubit. The subset with the most connectivity is selected. Due to symmetry there are many subsets with same connectivity. However, it also looks at the noise in the device and picks the subset with the least amount of noise. Finally that set is run through a reverse cuthill mckee traversal to reorder the qubits in the set for a lower degree.
There is no paper on it as I came up with it to solve a bug in earlier versions of the Qiskit swap mapper.

Related

Are transformer-based language models overfitting on the paraphrase identification task? What tools overcome this?

I've been working on a sentence transformation task that involves paraphrase identification as a critical step: if we are confident enough that the state of the program (a sentence repeatedly modified) has become a paraphrase of a target sentence, stop transforming. The overall goal is actually to study potential reasoning in predictive models that can generate language prior to a target sentence. The approach is just one specific way of reaching that goal. Nevertheless, I've become interested in the paraphrase identification task itself, as it's received some boost from language models recently.
The problem I run into is when I manipulate sentences from examples or datasets. For example, in this HuggingFace example, if I negate either sequence or change the subject to Bloomberg, I still get a majority "is paraphrase" prediction. I started going through many examples in the MSRPC training set and negating one sentence in a positive example or making one sentence in a negative example a paraphrase of the other, especially when doing so would be a few word edit. I found to my surprise that various language models, like bert-base-cased-finetuned-mrpc and textattack/roberta-base-MRPC, don't change their confidences much on these sorts of changes. It's surprising as these models claim an f1 score of 0.918+. The dataset is clearly missing a focus on negative examples and small perturbative examples.
My question is, are there datasets, techniques, or models that deal well when given small edits? I know that this is an extremely generic question, much more than is typically asked on StackOverflow, but my concern is in finding practical tools. If there is a theoretical technique, then it might not be suitable as I'm in the category of "available tools define your approach" rather than vice-versa. So I hope that the community would have a recommendation on this.
Short answer to the question: yes, they are overfitting. Most of the important NLP data sets are not actually well-crafted enough to test what they claim to test, and instead test the ability of the model to find subtle (and not-so-subtle) patterns in the data.
The best tool I know for creating data sets that help deal with this is Checklist. The corresponding paper, "Beyond Accuracy: Behavioral Testing of NLP models with CheckList" is very readable and goes into depth on this type of issue. They have a very relevant table... but need some terms:
We prompt users to evaluate each capability with
three different test types (when possible): Minimum Functionality tests, Invariance, and Directional Expectation tests... A Minimum Functionality test (MFT), is a collection of simple examples (and labels) to check a
behavior within a capability. MFTs are similar to
creating small and focused testing datasets, and are
particularly useful for detecting when models use
shortcuts to handle complex inputs without actually
mastering the capability.
...An Invariance test (INV) is when we apply
label-preserving perturbations to inputs and expect
the model prediction to remain the same.
A Directional Expectation test (DIR) is similar,
except that the label is expected to change in a certain way. For example, we expect that sentiment
will not become more positive if we add “You are
lame.” to the end of tweets directed at an airline
(Figure 1C).
I haven't been actively involved in NLG for long, so this answer will be a bit more anecdotal than SO's algorithms would like. Starting with the fact that in my corner of Europe, the general sentiment toward peer review requirements for any kind of NLG project are higher by several orders of magnitude compared to other sciences - and likely not without reason or tensor thereof.
This makes funding a bigger challenge, so wherever you are, I wish you luck on that front. I'm not sure of how big of a deal this site is in the niche, but [Ehud Reiter's Blog][1] is where I would start looking into your tooling ideas.
Maybe even reach out to them/him personally, because I can't think of another source that has an academic background and a strong propensity for practical applications of NLG, at least based on the kind of content they've been putting out over the years.
Your background, environment/funding, and seniority level/control you have over the project will eventually compose your vector decision for you. I's just how it goes on the bleeding edge of anything. What I will add, though, is not to limit yourself to a single language or technology in this phase because of those precise reasons you've mentioned. I'd recommend the same in terms of potential open source involvement but if your profile information is accurate, that probably won't happen, no matter what you do and accomplish.
But yeah, in the grand scheme of things, your question is far from too broad, in my view. It identifies a rather unmistakable problem pattern that not all branches of science are as lackadaisical to approach as NLG-adjacent fields seem to be right now. In that regard, it's not broad enough and will need to be promulgated far and wide before community-driven tooling will give you serious options on a micro level.
Blasphemy, sure, but the performance is already stacked against you As for the question potentially being too broad, I'd posit it is not broad enough, so long as we collectively remain in a "oh, I was waiting for you to start doing something about it" phase.
P.S. I'd eliminate any Rust and ECMAScript alternatives prior to looking into Python, blapshemous as this might sound to a 2021 data scientist
. Some might ARight nowccounting forr the ridicule this would receive xou sltrsfx hsbr s fszs drz zhsz s mrnzsl rcrtvidr, sz lrsdz
due to performance easons.
[1]: https://ehudreiter.com/2016/12/18/nlg-vs-templates/

grade separation and shortest path on networks in spatstat

I have a question not on spatstat but on use and limitation of spatsat.
During the calculation of metrics like pcf and k function equivalents on linear networks, a shortest path distance is used instead of euclidean distance. I have the spatsat book from 2015 and I remember reading somewhere in the text that the shortest path calculation on networks is not sensitive to grade separations like flyover, bridges, underpass and therefore caution should be exercised in selecting the study area or be aware of this limitation while interpreting results.
Is there any publication that discusses this limitation of grade separation in detail and may be suggesting some workarounds? Or limitations of network equivalents in general?
Thank you
The code for linear networks in spatstat can handle networks which contain flyovers, bridges, underpasses and so on.
Indeed the dataset dendrite, supplied with spatstat, includes some of these features.
The shortest-path calculation takes account of these features correctly.
The only challenge is that you can't build the network structure using the data conversion function as.linnet.psp, because it takes a list of line segments and tries to guess which segments are connected at a vertex. In this context it will guess wrongly.
The connectivity information has to be specified somehow! You can use the constructor function linnet to build the network object when you have this information. The connectivity can be edited interactively using clickjoin.
This is explained briefly on page 713 of the book (which also mentions dendrite).
The networks that can be handled by spatstat are slightly more general than the simple model described on page 711. Lines can cross over without intersecting.
I'm sorry the documentation is terse, but much of this information has been kept confidential until recently (while our PhD students were finishing).

Test multiple algorithms in one experiment

Is there any way to test multiple algorithms rather than doing it once for each and every algorithm; then checking the result? There are a lot of times where I don’t really know which one to use, so I would like to test multiple and get the result (error rate) fairly quick in Azure Machine Learning Studio.
You could connect the scores of multiple algorithms with an 'Evaluate Model' button to evaluate algorithms against each other.
Hope this helps.
The module you are looking for, is the one called “Cross-Validate Model”. It basically splits whatever comes in from the input-port (dataset) into 10 pieces, then reserves the last piece as the “answer”; and trains the nine other subset models and returns a set of accuracy statistics measured towards the last subset. What you would look at is the column called “Mean absolute error” which is the average error for the trained models. You can connect whatever algorithm you want to one of the ports, and subsequently you will receive the result for that algorithm in particular after you “right-click” the port which gives the score.
After that you can assess which algorithm did the best. And as a pro-tip; you could use the Filter-based-feature selection to actually see which column had a significant impact on the result.
You can check section 6.2.4 of hands-on-lab at GitHub https://github.com/Azure-Readiness/hol-azure-machine-learning/blob/master/006-lab-model-evaluation.md which focuses on the evaluation of multiple algorithms etc.

Cannot generalize my Genetic Algorithm to new Data

I've written a GA to model a handful of stocks (4) over a period of time (5 years). It's impressive how quickly the GA can find an optimal solution to the training data, but I am also aware that this is mainly due to it's tendency to over-fit in the training phase.
However, I still thought I could take a few precautions and and get some kind of prediction on a set of unseen test stocks from the same period.
One precaution I took was:
When multiple stocks can be bought on the same day the GA only buys one from the list and it chooses this one randomly. I thought this randomness might help to avoid over-fitting?
Even if over-fitting is still occurring,shouldn't it be absent in the initial generations of the GA since it hasn't had a chance to over-fit yet?
As a note, I am aware of the no-free-lunch theorem which demonstrates ( I believe) that there is no perfect set of parameters which will produce an optimal output for two different datasets. If we take this further, does this no-free-lunch theorem also prohibit generalization?
The graph below illustrates this.
->The blue line is the GA output.
->The red line is the training data (slightly different because of the aforementioned randomness)
-> The yellow line is the stubborn test data which shows no generalization. In fact this is the most flattering graph I could produce..
The y-axis is profit, the x axis is the trading strategies sorted from worst to best ( left to right) according to there respective profits (on the y axis)
Some of the best advice I've received so far (thanks seaotternerd) is to focus on the earlier generations and increase the number of training examples. The graph below has 12 training stocks rather than just 4, and shows only the first 200 generations (instead of 1,000). Again, it's the most flattering chart I could produce, this time with medium selection pressure. It certainly looks a little bit better, but not fantastic either. The red line is the test data.
The problem with over-fitting is that, within a single data-set it's pretty challenging to tell over-fitting apart from actually getting better in the general case. In many ways, this is more of an art than a science, but here are some general guidelines:
A GA will learn to do exactly what you attach fitness to. If you tell it to get really good at predicting one series of stocks, it will do that. If you keep swapping in different stocks to predict, though, you might be more successful at getting it to generalize. There are a few ways to do this. The one that has had perhaps the most promising results for reducing over-fitting is imposing spatial structure on the population and evaluating on different test cases in different cells, as in the SCALP algorithm. You could also switch out the test cases on a time basis, but I've had more mixed results with that sort of an approach.
You are correct that over-fitting should be less of a problem early on. Generally, the longer you run a GA, the more over-fitting will be possible. Typically, people tend to assume that the general rules will be learned first, before the rote memorization of over-fitting takes place. However, I don't think I've actually ever seen this studied rigorously - I could imagine a scenario where over-fitting was so much easier than finding general rules that it happens first. I have no idea how common that is, though. Stopping early will also reduce the ability of the GA to find better general solutions.
Using a larger data-set (four stocks isn't that many) will make your GA less susceptible to over-fitting.
Randomness is an interesting idea. It will definitely hurt the GA's ability to find general rules, but it should also reduce over-fitting. Without knowing more about the specifics of your algorithm, it's hard to say which would win out.
That's a really interesting thought about the no free lunch theorem. I'm not 100% sure, but I think it does apply here to some extent - better fitting some data will make your results fit other data worse, by necessity. However, as wide as the range of possible stock behaviors is, it is much narrower than the range of all possible time series in general. This is why it is possible to have optimization algorithms at all - a given problem that we are working with tends produce data that cluster relatively closely together, relative to the entire space of possible data. So, within that set of inputs that we actually care about, it is possible to get better. There is generally an upper limit of some sort on how well you can do, and it is possible that you have hit that upper limit for your data-set. But generalization is possible to some extent, so I wouldn't give up just yet.
Bottom line: I think that varying the test cases shows the most promise (although I'm biased, because that's one of my primary areas of research), but it is also the most challenging solution, implementation-wise. So as a simpler fix you can try stopping evolution sooner or increasing your data-set.

Reconstructing now-famous 17-year-old's Markov-chain-based information-retrieval algorithm "Apodora"

While we were all twiddling our thumbs, a 17-year-old Canadian boy has apparently found an information retrieval algorithm that:
a) performs with twice the precision of the current, and widely-used vector space model
b) is 'fairly accurate' at identifying similar words.
c) makes microsearch more accurate
Here is a good interview.
Unfortunately, there's no published paper I can find yet, but, from the snatches I remember from the graphical models and machine learning classes I took a few years ago, I think we should be able to reconstruct it from his submision abstract, and what he says about it in interviews.
From interview:
Some searches find words that appear in similar contexts. That’s
pretty good, but that’s following the relationships to the first
degree. My algorithm tries to follow connections further. Connections
that are close are deemed more valuable. In theory, it follows
connections to an infinite degree.
And the abstract puts it in context:
A novel information retrieval algorithm called "Apodora" is introduced,
using limiting powers of Markov chain-like matrices to determine
models for the documents and making contextual statistical inferences
about the semantics of words. The system is implemented and compared
to the vector space model. Especially when the query is short, the
novel algorithm gives results with approximately twice the precision
and has interesting applications to microsearch.
I feel like someone who knows about markov-chain-like matrices or information retrieval would immediately be able to realize what he's doing.
So: what is he doing?
From the use of words like 'context' and the fact that he's introduced a second order level of statistical dependency, I suspect he is doing something related to the LDA-HMM method outlined in the paper: Griffiths, T., Steyvers, M., Blei, D., & Tenenbaum, J. (2005). Integrating topics and syntax. Advances in Neural Information Processing Systems. There are some inherent limits to the resolution of the search due to model averaging. However, I'm envious of doing stuff like this at 17 and I hope to heck he's done something independent and at least incrementally better. Even a different direction on the same topic would be pretty cool.

Resources