Given a dataframe as follows:
firstname lastname email_address \
0 Doug Watson douglas.watson#dignityhealth.org
1 Nick Holekamp nick.holekamp#rankenjordan.org
2 Rob Schreiner rob.schriener#wellstar.org
3 Austin Phillips austin.phillips#precmed.com
4 Elise Geiger egeiger#puracap.com
5 Paul Urick purick#diplomatpharmacy.com
6 Michael Obringer michael.obringer#lashgroup.com
7 Craig Heneghan cheneghan#west-ward.com
8 Kathy Hirst kathleen.hirst#sunovion.com
9 Stefan Bluemmers stefan.bluemmers#grunenthal.com
companyname
0 Dignity Health
1 Ranken Jordan Pediatric Bridge Hospital
2 WellStar Health System
3 Precision Medical Products, Inc.
4 puracap.com
5 Diplomat Specialty Pharmacy
6 Lash Group
7 West-Ward Pharmaceuticals
8 Sunovion Pharmaceuticals
9 GrĂ¼nenthal Group
How could I create possible email addresses using common email patterns as such: firstlast#example.com, first.last#example.com, f.last#example.com, lastF#example.com, first_last#example.com, firstL#example.com, etc.
df['email1'] = df.firstname.str.lower() + '.' + df.lastname.str.lower() + '#' + df.companyname.str.replace('\s+', '').str.lower() + '.com'
print(df['email1'])
Out:
0 doug.watson#dignityhealth.com
1 nick.holekamp#rankenjordanpediatricbridgehospi... --->problematic
2 rob.schreiner#wellstarhealthsystem.com
3 austin.phillips#precisionmedicalproducts,inc..com --->problematic
4 elise.geiger#puracap.com.com --->problematic
...
9995 terry.hanley#kempersportsmanagement.com
9996 christine.marks#geocomp.com
9997 darryl.rickner#doe.com
9998 lalit.sharma#lovelylifestyle.com
9999 parul.dutt#infibeam.com
Some of them seems quite problematic, anyone could help to solve this issue? Thanks a lot.
EDITED:
print(df) after applying #Sajith Herath's solution:
Out:
firstname lastname companyname \
0 Nick Holekamp Ranken ...
email
0 nick. ...
You can use a method to create permutations of username with different separators and define a max length that simplify the domain using company name as follows
import pandas as pd
import random
data = {"firstname":["Nick"],"lastname":["Holekamp"],"companyname":["Ranken \
Jordan Pediatric Bridge Hospital"]}
df = pd.DataFrame(data=data)
max_char = 5
emails = []
def simplify_domain(text):
if len(text)>max_char:
text = ''.join([c for c in text if c.isupper()])
return text.lower()
return text.replace("\s+","").lower()
def username_permutations(first_name,last_name):
# define separators
separators = [".", "_", "-"]
#lower case
combinations = list(map(lambda x:f"{first_name.lower()}{x} \
{last_name.lower()}",separators))
#append a random number to tail
n = random.randint(1, 100)
combinations.extend(list(map(lambda x:f"{x}{n}",combinations)))
return combinations
for index,row in df.iterrows():
usernames = username_permutations(row["firstname"],row["lastname"])
email_permutations = list(map(lambda x: f" \
{x}#{simplify_domain(row['companyname'])}.com",usernames))
emails.append(','.join(email_permutations))
df["email"] = emails
Final result will be nick.holekamp#rjpbh.com,nick_holekamp#rjpbh.com,nick-holekamp#rjpbh.com,nick.holekamp66#rjpbh.com,nick_holekamp66#rjpbh.com,nick-holekamp66#rjpbh.com
you can modify simplify_domain method to validate given string such as removing inc or .com values
Related
Im trying to add suffix to % Paid row in the dataframe, but im stuck with only adding suffix to the column names.
is there a way i can add suffix to a specific row values,
Any suggestions are highly appreciated.
d={
("Payments","Jan","NOS"):[],
("Payments","Feb","NOS"):[],
("Payments","Mar","NOS"):[],
}
d = pd.DataFrame(d)
d.loc["Total",("Payments","Jan","NOS")] = 9991
d.loc["Total",("Payments","Feb","NOS")] = 3638
d.loc["Total",("Payments","Mar","NOS")] = 5433
d.loc["Paid",("Payments","Jan","NOS")] = 139
d.loc["Paid",("Payments","Feb","NOS")] = 123
d.loc["Paid",("Payments","Mar","NOS")] = 20
d.loc["% Paid",("Payments","Jan","NOS")] = round((d.loc["Paid",("Payments","Jan","NOS")] / d.loc["Total",("Payments","Jan","NOS")])*100)
d.loc["% Paid",("Payments","Feb","NOS")] = round((d.loc["Paid",("Payments","Feb","NOS")] / d.loc["Total",("Payments","Feb","NOS")])*100)
d.loc["% Paid",("Payments","Mar","NOS")] = round((d.loc["Paid",("Payments","Mar","NOS")] / d.loc["Total",("Payments","Mar","NOS")])*100)
without suffix
I tried this way, it works but.. im looking for adding suffix for an entire row..
d.loc["% Paid",("Payments","Jan","NOS")] = str(round((d.loc["Paid",("Payments","Jan","NOS")] / d.loc["Total",("Payments","Jan","NOS")])*100)) + '%'
d.loc["% Paid",("Payments","Feb","NOS")] = str(round((d.loc["Paid",("Payments","Feb","NOS")] / d.loc["Total",("Payments","Feb","NOS")])*100)) + '%
d.loc["% Paid",("Payments","Mar","NOS")] = str(round((d.loc["Paid",("Payments","Mar","NOS")] / d.loc["Total",("Payments","Mar","NOS")])*100)) + '%'
with suffix
Select row separately by first index value, round and convert to integers, last to strings and add %:
d.loc["% Paid"] = d.loc["% Paid"].round().astype(int).astype(str).add(' %')
print (d)
Payments
Jan Feb Mar
NOS NOS NOS
Total 9991.0 3638.0 5433.0
Paid 139.0 123.0 20.0
% Paid 1 % 3 % 0 %
So I have these strings that I split by spaces (' ') and I just rolled them into a single list I called 'keyLabelRun'
so it looks like this:
keyLabelRun[0-12]:
0 OS=Dengue
1 virus
2 3
3 PE=4
4 SV=1
5 Split=0
6
7 OS=Bacillus
8 subtilis
9 XF-1
10 GN=opuBA
11 PE=4
12 SV=1
I only want the elements that include and are after "OS=", anything else, whether it be "SV=" or "PE=" etc. I want to skip over those elements until I get to the next "OS="
The number of elements to the next "OS=" is arbitrary so that's where I'm having the problem.
This is what I'm currently trying:
OSarr = []
for i in range(len(keyLabelrun)):
if keyLabelrun[i].count('OS='):
OSarr.append(keyLabelrun[i])
if keyLabelrun[i+1].count('=') != 1:
continue
But the elements where "OS=" is not included is what is tripping me up I think.
Also at the end I'm going to join them all back together in their own elements but I feel like I will be able to handle that after this.
In my attempt, I am trying to append all elements I'm looking for in order to an new list 'OSarr'
If anyone can lend a hand, it would be much appreciated.
Thank you.
These list of strings came from a dataset that is a text file in the form:
>tr|W0FSK4|W0FSK4_9FLAV Genome polyprotein (Fragment) OS=Dengue virus 3 PE=4 SV=1 Split=0
MNNQRKKTGKPSINMLKRVRNRVSTGSQLAKRFSKGLLNGQGPMKLVMAFIAFLRFLAIPPTAGVLARWGTFKKSGAIKVLKGFKKEISNMLSIINKRKKTSLCLMMILPAALAFHLTSRDGEPRMIVGKNERGKSLLFKTASGINMCTLIAMDLGEMCDDTVTYKCPHITEVEPEDIDCWCNLTSTWVTYGTCNQAGEHRRDKRSVALAPHVGMGLDTRTQTWMSAEGAWRQVEKVETWALRHPGFTILALFLAHYIGTSLTQKVVIFILLMLVTPSMTMRCVGVGNRDFVEGLSGATWVDVVLEHGGCVTTMAKNKPTLDIELQKTEATQLATLRKLCIEGKITNITTDSRCPTQGEATLPEEQDQNYVCKHTYVDRGWGNGCGLFGKGSLVTCAKFQCLEPIEGKVVQYENLKYTVIITVHTGDQHQVGNETQGVTAEITPQASTTEAILPEYGTLGLECSPRTGLDFNEMILLTMKNKAWMVHRQWFFDLPLPWTSGATTETPTWNRKELLVTFKNAHAKKQEVVVLGSQEGAMHTALTGATEIQNSGGTSIFAGHLKCRLKMDKLELKGMSYAMCTNTFVLKKEVSETQHGTILIKVEYKGEDVPCKIPFSTEDGQGKAHNGRLITANPVVTKKEEPVNIEAEPPFGESNIVIGIGDNALKINWYKKGSSIGKMFEATARGARRMAILGDTAWDFGSVGGVLNSLGKMVHQIFGSAYTALFSGVSWVMKIGIGVLLTWIGLNSKNTSMSFSCIAIGIITLYLGAVVQADMGCVINWKGKELKCGSGIFVTNEVHTWTEQYKFQADSPKRLATAIAGAWENGVCGIRSTTRMENLLWKQIANELNYILWENNIKLTVVVGDIIGVLEQGKRTLTPQPMELKYSWKTWGKAKIVTAETQNSSFIIDGPNTPECPSVSRAWNVWEVEDYGFGVFTTNIWLKLREVYTQLCDHRLMSAAVKDERAVHADMGYWIESQKNGSWKLEKASLIEVKTCTWPKSHTLWSNGVLESDMIIPKSLAGPISQHNHRPGYHTQTAGPWHLGKLELDFNYCEGTTVVITENCGTRGPSLRTTTVSGKLIHEWCCRSCTLPPLRYMGEDGCWYGMEIRPISEKEENMVKSLVSAGSGKVDNFTMGVLCLAILFEEVMRGKFGKKHMIAGVFFTFVLLLSGQITWRDMAHTLIMIGSNASDRMGMGVTYLALIATFKIQPFLALGFFLRKLTSRENLLLGVGLAMATTLQLPEDIEQMANGIALGLMALKLITQFETYQLWTALISLTCSNTIFTLTVAWRTATLILAGVSLLPVCQSSSMRKTDWLPMAVAAMGVPPLPLFIFGLKDTLKRRSWPLNEGVMAVGLVSILASSLLRNDVPMAGPLVAGGLLIACYVITGTSADLTVEKAADITWEEEAEQTGVSHNLMITVDDDGTMRIKDDETENILTVLLKTALLIVSGIFPYSIPATLLVWHTWQKQTQRSGVLWDVPSPPETQKAELEEGVYRIKQQGIFGKTQVGVGVQKEGVFHTMWHVTRGAVLTYNGKRLEPNWASVKKDLISYGGGWRLSAQWQKGEEVQVIAVEPGKNPKNFQTMPGTFQTTTGEIGAIALDFKPGTSGSPIINREGKVVGLYGNGVVTKNGGYVSGIAQTNAEPDGPTPELEEEMFKKRNLTIMDLHPGSGKTRKYLPAIVREAIKRRLRTLILAPTRVVAAEMEEALKGLPIRYQTTATKSEHTGREIVDLMCHATFTMRLLSPVRVPNYNLIIMDEAHFTDPASIAARGYISTRVGMGEAAAIFMTATPPGTADAFPQSNAPIQDEERDIPERSWNSGNEWITDFAGKTVWFVPSIKAGNDIANCLRKNGKKVIQLSRKTFDTEYQKTKLNDWDFVV
>tr|M4KW32|M4KW32_BACIU Choline ABC transporter (ATP-binding protein) OS=Bacillus subtilis XF-1 GN=opuBA PE=4 SV=1 Split=0
MLTLENVSKTYKGGKKAVNNVNLKIAKGEFICFIGPSGCGKTTTMKMINRLIEPSAGKIFIDGENIMDQDPVELRRKIGYVIQQIGLFPHMTIQQNISLVPKLLKWPEQQRKERARELLKLVDMGPEYVDRYPHELSGGQQQRIGVLRALAAEPPLILMDEPFGALDPITRDSLQEEFKKLQKTLHKTIVFVTHDMDEAIKLADRIVILKAGEIVQVGTPDDILRNPADEFVEEFIGKERLIQSSSPDVERVDQIMNTQPVTITADKTLSEAIQLMRQERVDSLLVVDDEHVLQGYVDVEIIDQCRKKANLIGEVLHEDIYTVLGGTLLRDTVRKILKRGVKYVPVVDEDRRLIGIVTRASLVDIVYDSLWGEEKQLAALS
>sp|Q8AWH3|SX17A_XENTR Transcription factor Sox-17-alpha OS=Xenopus tropicalis GN=sox17a PE=2 SV=1 Split=0
MSSPDGGYASDDQNQGKCSVPIMMTGLGQCQWAEPMNSLGEGKLKSDAGSANSRGKAEARIRRPMNAFMVWAKDERKRLAQQNPDLHNAELSKMLGKSWKALTLAEKRPFVEEAERLRVQHMQDHPNYKYRPRRRKQVKRMKRADTGFMHMAEPPESAVLGTDGRMCLESFSLGYHEQTYPHSQLPQGSHYREPQAMAPHYDGYSLPTPESSPLDLAEADPVFFTSPPQDECQMMPYSYNASYTHQQNSGASMLVRQMPQAEQMGQGSPVQGMMGCQSSPQMYYGQMYLPGSARHHQLPQAGQNSPPPEAQQMGRADHIQQVDMLAEVDRTEFEQYLSYVAKSDLGMHYHGQESVVPTADNGPISSVLSDASTAVYYCNYPSA
I got it! :D
OSarr = []
G = 0
for i in range(len(keyLabelrun)):
OSarr.append(keyLabelrun[G])
G += 1
if keyLabelrun[G].count('='):
while keyLabelrun[G].count('OS=') != 1:
G+=1
Maybe next time everyone, thank you!
Due to the syntax, you have to keep track of which part (OS, PE, etc) you're currently parsing. Here's a function to extract the species name from the FASTA header:
def extract_species(description):
species_parts = []
is_os = False
for word in description.split():
if word[:3] == 'OS=':
is_os = True
species_parts.append(word[3:])
elif '=' in word:
is_os = False
elif is_os:
species_parts.append(word)
return ' '.join(species_parts)
You can call it when processing your input file, e.g.:
from Bio import SeqIO
for record in SeqIO.parse('input.fa', 'fasta'):
species = extract_species(record.description)
Hello I want to find the account text # in the title column, and save it in the new csv. Pandas can do it, I tried to make it but it didn't work.
This is my csv http://www.sharecsv.com/s/c1ed9790f481a8d452049be439f4e3d8/Newnormal.csv
this is my code:
import pandas as pd
data = pd.read_csv("Newnormal.csv")
data.dropna(inplace = True)
sub ='#'
data["Indexes"]= data["title"].str.find(sub)
print(data)
I want results like this
From, to, title Xavier5501,KudiiThaufeeq,RT #KudiiThaufeeq: Royal
Rape, Royal Harassment, Royal Cocktail Party, Royal Pedo, Royal
Bidding, Royal Maalee Bayaan, Royal Slavery..et
Thank you.
reduce records to only those that have an "#" in title
define new column which is text between "#" and ":"
you are left with some records where this leave NaN in to column. I've just filtered these out
df = pd.read_csv("Newnormal.csv")
df = df[df["title"].str.contains("#")==True]
df["to"] = df["title"].str.extract(r".*([#][A-Z,a-z,0-9,_]+[:])")
df = df[["from","to","title"]]
df[~df["to"].isna()].to_csv("ToNewNormal.csv", index=False)
df[~df["to"].isna()]
output
from to title
1 Xavier5501 #KudiiThaufeeq: RT #KudiiThaufeeq: Royal Rape, Royal Harassmen...
2 Suzane24979006 #USAID_NISHTHA: RT #USAID_NISHTHA: Don't step outside your hou...
3 sandeep_sprabhu #USAID_NISHTHA: RT #USAID_NISHTHA: Don't step outside your hou...
4 oliLince #Timothy_Hughes: RT #Timothy_Hughes: How to Get a Salesforce Th...
7 rismadwip #danielepermana: RT #danielepermana: Pak kasus covid per hari s...
... ... ... ...
992 Reptoid_Hunter #sapiofoxy: RT #sapiofoxy: I literally can't believe we ha...
994 KPCResearch #sapiofoxy: RT #sapiofoxy: I literally can't believe we ha...
995 GreySparkUK #VoxSmartGlobal: RT #VoxSmartGlobal: The #newnormal will see mo...
997 Gabboa10 #HuShameem: RT #HuShameem: One of #PGO_MV admin staff test...
999 wanjirunjendu #ntvkenya: RT #ntvkenya: AAK's Mugure Njendu shares insig...
I have gotten a very strange data. I have dictionary with keys and values where I want to use this dictionary to search if these keywords are ONLY starting and/or end of the text not middle of the sentence. I tried to create simple data frame below to show the problem case and python codes that I have tried so far. How do I get it go search for only starting or ending of the sentence? This one searches whole text sub-strings.
Code:
d = {'apple corp':'Company','app':'Application'} #dictionary
l1 = [1, 2, 3,4]
l2 = [
"The word Apple is commonly confused with Apple Corp which is a business",
"Apple Corp is a business they make computers",
"Apple Corp also writes App",
"The Apple Corp also writes App"
]
df = pd.DataFrame({'id':l1,'text':l2})
df['text'] = df['text'].str.lower()
df
Original Dataframe:
id text
1 The word Apple is commonly confused with Apple Corp which is a business
2 Apple Corp is a business they make computers
3 Apple Corp also writes App
4 The Apple Corp also writes App
Code Tried out:
def matcher(k):
x = (i for i in d if i in k)
# i.startswith(k) getting error
return ';'.join(map(d.get, x))
df['text_value'] = df['text'].map(matcher)
df
Error:
TypeError: 'in <string>' requires string as left operand, not bool
when I use this x = (i for i in d if i.startswith(k) in k)
Empty values if i tried this x = (i for i in d if i.startswith(k) == True in k)
TypeError: sequence item 0: expected str instance, NoneType found
when i use this x = (i.startswith(k) for i in d if i in k)
Results from Code above ... Create new field 'text_value':
id text text_value
1 The word Apple is commonly confused with Apple Corp which is a business Company;Application
2 Apple Corp is a business they make computers Company;Application
3 Apple Corp also writes App Company;Application
4 The Apple Corp also writes App Company;Application
Trying to get an FINAL output like this:
id text text_value
1 The word Apple is commonly confused with Apple Corp which is a business NaN
2 Apple Corp is a business they make computers Company
3 Apple Corp also writes App Company;Application
4 The Apple Corp also writes App Application
You need a matcher function which can accept flag and then call that twice to get the results for startswith and endswith.
def matcher(s, flag="start"):
if flag=="start":
for i in d:
if s.startswith(i):
return d[i]
else:
for i in d:
if s.endswith(i):
return d[i]
return None
df['st'] = df['text'].apply(matcher)
df['ed'] = df['text'].apply(matcher, flag="end")
df['text_value'] = df[['st', 'ed']].apply(lambda x: ';'.join(x.dropna()),1)
df = df[['id','text', 'text_value']]
The text_value column looks like:
0
1 Company
2 Company;Application
3 Application
Name: text_value, dtype: object
joined = "|".join(d.keys())
pat = '(?i)^(?:the\\s*)?(' + joined + ')\\b.*?|.*\\b(' + joined + ')$'+'|.*'
get = lambda x: d.get(x.group(1),"") + (';' +d.get(x.group(2),"") if x.group(2) else '')
df.text.str.replace(pat,get)
0
1 Company
2 Company;Application
3 Company;Application
Name: text, dtype: object
url = "http://www.espn.com/nba/standings"
dfs = pd.read_html(url, header = None)
dfs[1]
resulting in:
1* --MILMilwaukee Bucks
0 2y --TORToronto Raptors
1 3x --PHIPhiladelphia 76ers
2 4x --BOSBoston Celtics
3 5x --INDIndiana Pacers
0 2y --TORToronto Raptors
1* --MILMilwaukee Bucks shouldn't be a column name
I feel like I am doing something wrong (haven't used Pandas in a while), but from what I have read header = None should work.
I have tried doing it but in my case also header = None didn't work(I am searching for the reason why it didn't work) well instead of it you can use header = 0 it works well.
data = pd.read_html("test.html",header = 0)
print(data)
** Output::**
[ Programming Language Creator Year
0 C Dennis Ritchie 1972
1 Python Guido Van Rossum 1989
2 Ruby Yukihiro Matsumoto 1995]
This will work for you. ;)